東京都区部の地価変動に関する実証分析

---- ヘドニック地価関数の推計 ----

奈 良 卓

目 次

- I 序論
- II 東京都区部における地価の動向
- III ヘドニック・アプローチの理論的基礎と適用上の問題点
- IV ヘドニック・アプローチによる地価関数の推計
- V 結語

I. 序 論

奈良 [2005] では,近年の東京都区部都心部 及び同南西部における地価回復の傾向,すなわ ち地価が前年に比較して上昇するか横ばいの地 点が増加している傾向に着目,その要因につき, 「その土地の利便性は地価変動の態様に影響を 及ぼすのか?」,また「その土地の開発状況は地 価変動の態様に影響を及ぼすのか?」といった 2つの観点からの統計学的な分析を試みた。

前者の土地の利便性については、当該地点が 隣接する道路の幅員、当該地点から最寄り駅ま での距離といった、地点の利便性を表わす2つ の指標に着目、「当該調査地点が隣接する道路幅 員と地価変動の態様とは無関係である」及び「当 該調査地点から最寄り駅までの距離と地価変動 の態様とは無関係である」といった2つの帰無 仮説を構築した上で、地点の利便性に関する2 指標それぞれと平成16年公示地価における対 前年地価変動の態様("上昇"、"横ばい"、"ほぼ 横ばい"、"下落")との独立性の検定を行い!、東

後者の土地開発の状況については, 当該地点 が市街地再開発事業、土地区画整理事業等各種 市街地開発事業の対象として何らかの指定を受 けているか否かと住宅地のみの地価変動の態様 との独立性の検定を行い, 分析の結果, 東京都 区部都心部及び南西部住宅地において「その地 点が市街地開発に関する何らかの指定を受けて いるか否かは地価変動の熊様に有意な影響を及 ぼさない」という結論が導き出された。しかる に、後者に関しては、個々の地点における市街 地開発の状況に関する局所的かつ詳細な情報が 不足しているゆえに分析結果に信憑性をもてな い点, また, 前者についても, 当該地点の利便 性等に関する他の重要な地点特性, たとえば都 心部からの時間距離、また買物の利便性や病院 等へのアクセスが地価に及ぼす影響に関する分

京都区部都心部及び南西部住宅地, 商業地とも 概ね「隣接する道路幅員が広大であるような地 点, 最寄りの鉄道駅からの距離が短い地点ほど 地価回復の傾向が著しい」といった結論が導き 出された。

¹ ここに "上昇"とは平成 16 年の公示地価が同 15 年のそれを上回っている状態を,また"横ば い"及び"ほぼ横ばい"とはそれぞれ,平成 16 年

の公示地価の対前年下落率が0%及び1%未満である状態を,さらに"下落"とは対前年下落率が1%以上である状態をさしていう。

析が欠落している,すなわち地価変動の要因を 網羅していない点については奈良 [2005] で今 後の課題として掲げたとおりである。

本論の目的は、奈良[2005]による分析を精 緻化することにある。既に述べたように,また 金本・中村・矢澤 [1989] や建設政策研究セン ター [1998] 等先行研究からも明らかなように、 道路幅員及び最寄りの駅からの距離だけではな く, 社会資本サービスの水準, 立地条件, 環境 条件といった他の複数の地点特性も地価に重要 な影響を及ぼすはずである。かかる前提に立脚 する場合, むしろ重要な点は, いかなる要因が いかなる程度において, 近年の東京都区部にお ける地価形成に寄与し, ひいては地価変動に影 響を及ぼしてきたのか,可能な限り多くの要因 をリストアップするとともに、それぞれの地点 特性の地価形成や地価変動に対する寄与の程度 を計測することである。そして、このような分 析を可能にする手法の1つがヘドニック・アプ ローチなのである2。

ヘドニック・アプローチは、Rosen [1974] によって理論的基礎が確立された手法であり、立地条件や環境条件の改善は地価の上昇に反映されるので、地価の変化を観察することによって改善による便益を推定することができるとするキャピタリゼーション仮説をその理論的背景としている。すなわち、ヘドニック・アプローチ

2 優れた立地条件や良好な環境は、それ自体市場 で取引されることはなく市場価格が成立しな い,いわゆる非市場財である。ヘドニック・アプ ローチは, このような非市場財の価値を計測す るための手法であるが,同じ目的をもつ代表的 な他の手法として仮想市場法 (CVM; Contingent Valuation Method) を挙げることができ る。仮想市場法は,仮想的な立地条件や環境質の 改善に対して人々がどれだけの付け値を与える か, 意識調査をもとに(立地条件や環境質の改 善) 支払い意思額を推定することによって立地 条件や環境条件の価値を計測する方法である。 詳細は、肥田野 [1997] 第5章あるいは建設省建 設政策研究センター「1998]第3章を参照せよ。 3 そもそもキャピタリゼーション仮説は,ある地 点の立地条件や環境条件あるいは社会資本整備 によって当該地点から得られるフローとしての

は立地条件や環境条件の違いがどのように地価の違いに反映されているかを観察し、それをもとに立地条件や環境条件の価値の測定を行うための手法である⁴。ヘドニック・アプローチは、同一時点の地点ごとの地価や地点特性に関するクロス・セクションデータを用いて、具体的には同一時点の複数の地点の地価を被説明変数、当該時点における地点ごと立地条件、環境条件といった複数の特性を説明変数とする回帰分析を行うことによって、立地条件や環境条件の価値を推定し、それらの地価に対する貢献度を計測することによって行われる。

本論では、直後のIIで、平成17年公示地価における東京都区部の地価に関する最新のデータをもとに、平成16年に比較して東京都区部における地価回復傾向がどの程度進展したのかを明らかにする。ところで、本論の目的の箇所で述べたヘドニック・アプローチは、いかなる場合

収益が増加し, それによってストックとしての 地価が高まる, すなわち便益が地価に資本化す るという仮説である。Kanemoto [1988] 及び金 本 [1992] は簡単な 2 財 2 地域モデルを用い、環 境質の劣るある地域において,優れた環境質を もつ別の地域の水準まで環境質の高めるプロ ジェクトを実施し, その便益を環境質の優れた 地域の(当該プロジェクト実施前の)事前価格体 系を基準とした等価変分によって定義した場 合,地代の変化(正確にはプロジェクト実施前の 2 地域の地代の差) によって環境質改善の価値を 計測するならば,消費者がすべて同質であると いう仮定のもとにおいても (環境質改善の) 便益 を過大評価してしまうことを証明している(過 大評価定理)。ただし、消費者が同質で、かつ2地 域間の移動が自由でそのためのコストがゼロで あるという前提のもと、① プロジェクトの規 模が小さい,② 環境質改善の影響を受ける地 域の面積が小さい,③ 土地と他の財の間に代 替性がない,といった3つの条件のうち,1つで も成り立っているならば,地代の差異は便益の 過大評価をもたらさないこともあわせて証明し ている。以上, 詳細は肥田野 [1997] 第3章もあ わせて参照せよ。

4 ヘドニック・アプローチは、各種物価指数計測においてパソコンや自動車等耐久消費財の調査対象商品を変更する際に、品質調整を行う等それら対象商品の価格を実質化するための手法としても用いられる。例として、日本銀行調査統計局[2003]を参照せよ。

でも立地条件や環境条件の価値を正確に測定で きるわけではない。ヘドニック・アプローチの 理論的基礎に関する知識が欠落した状態で,同 手法を濫用すると立地条件や環境条件の価値の 測定にバイアスが生じる。そこで III では、ヘド ニック・アプローチの理論的基礎を解説し,バ イアスが発生する理由を明らかにするととも に、ヘドニック・アプローチを適用する上での 問題点についてコメントする。IV では、III を踏 まえ, 東京都区部の地価関数の推計を, 住宅地 と商業地について行うことにより,本論の目的 として掲げたように、東京都区部において地点 ごとに地価変動のあり方に格差が生じる真の原 因を明らかにする。地価関数の推計を行う際の 被説明変数として, 地価データとしての客観性 と普遍性から、住宅地、商業地ともやはり平成 17年公示地価を用いる(安藤[1997])。また、説 明変数の選択や関数形の選択に関する試行錯誤 を通じて, 当てはまりが良い地価関数を構築す ることを心がける。そして、それらをもとにい かなる地点特性がいかなる程度で当該地点の地 価形成に寄与しているのか, ひいては地点間の 地価変動格差がいかにしてもたらされるのかそ の真の要因を見つけ出す。最後の V では、本論 の問題点を指摘するとともに, 今後の課題を提 示して結びとする。

II. 東京都区部における地価の動向

表 II-1b は、平成 17 年『地価公示』における 東京都区部都心部の住宅地より 165 地点、同商 業地より 390 地点、東京都区部南西部の住宅地 より 467 地点、同商業地より 180 地点、東京都 区部北東部住宅地より 275 地点、同商業地より 146 地点、それぞれ標本抽出し、これらのブロッ クごとに平成 16 年 1 月 1 日から同 17 年 1 月 1 日までの 1 年間における対前年地価変動の態様 別に集計・整理したものである。ただし、標本 抽出した地点は、いずれも平成 14 年から 17 年 まで 4 年間連続して調査地点として選ばれた地 点である5。また、平成17年における地価回復が16年のそれに比してどの程度進展しているかの対比が容易になるように、奈良[2005]で既に提示した平成16年の対前年地価変動の態様ごとに集計した表を表II-1aとして掲げることとする。

はじめに東京都区部都心部住宅地では,165 地点中 76 地点 (46.1%) で地価が対前年で上昇, 46 地点 (27.9%) で横ばい, 33 地点 (20.0%) で ほぼ横ばいであった。同商業地390地点につい ても,111 地点(28.5%)で地価が対前年で上昇, 72 地点 (18.5%) で横ばい, 44 地点 (11.3%) で ほぼ横ばいであった。表 II-1a との比較からわ かるように,東京都区部都心部住宅地において 平成17年の地価が前年のそれに比して"ほぼ 横ばい"以上の地点(地価が対前年で上昇して いるか,不変であるか,下落したとしても下落 率が1%未満にとどまる地点)の割合が94%近 くに達し,平成16年の地価が前年のそれに比し て"ほぼ横ばい"以上の地点の割合(78%)を大 きく上回る, すなわち地価回復の傾向が一段と 進展していることがわかる。また同商業地につ いても17年における"ほぼ横ばい"以上の地点 の割合(58.2%) は16年のそれ(28.3%) を大 きく上回り, 住宅地価同様に地価回復の傾向が 一段と進展していることがわかる。

東京都区部南西部においても住宅地 467 地点 のうち 438 地点 (93.8%) で平成 17 年の地価が 対前年で"ほぼ横ばい"以上であり、平成 16 年 の"ほぼ横ばい"以上の割合 (50.3%) を大きく 上回っている。また、平成 17 年の同商業地価に おいても 180 地点のうち 158 地点 (87.8%) が "ほぼ横ばい"以上であり、平成 16 年の"ほぼ横

⁵ 奈良 [2005] で行ったのと同様、地価のデータに連続性を持たせることによって近年の地価の動向を正しく把握するため、また、かかる連続的なデータを用いてバランスしたデータによるパネル分析を将来的に行うことができるよう、住宅地及び商業地とも平成14年から平成17年までの4年連続調査地点として選ばれている地点のみピックアップした。

八戸大学紀要 第32号

表 II-1a 東京都区部におけるブロック別地価変動の状況 (平成 16 年)

		東京都区	部都心部			東京都区	部南西部			東京都区	部北東部	
	住宅地	割合(%)	商業地	割合(%)	住宅地	割合(%)	商業地	割合(%)	住宅地	割合(%)	商業地	割合(%)
上昇	17	9.8	43	10.5	4	0.8	2	1.1	0	0.0	0	0.0
横ばい	80	46.2	45	11.0	30	6.1	18	9.5	3	1.0	3	2.0
ほぼ横ばい	38	22.0	28	6.8	213	43.4	54	28.6	14	4.7	25	16.9
下落	38	22.0	294	71.7	244	49.7	115	60.8	284	94.4	120	81.1
合計	173	100.0	410	100.0	491	100.0	189	100.0	301	100.0	148	100.0

(出所)『地価公示』平成16年版より作成。

表 II-1b 東京都区部におけるブロック別地価変動の状況 (平成 17 年)

		東京都区	部都心部			東京都区	部南西部			東京都区	部北東部	
	住宅地	割合(%)	商業地	割合(%)	住宅地	割合(%)	商業地	割合(%)	住宅	割合(%)	商業地	割合(%)
上昇	76	46.1	111	28.5	28	6.0	10	5.6	5	1.8	2	1.4
横ばい	46	27.9	72	18.5	180	38.5	84	46.7	13	4.7	13	8.9
ほぼ横ばい	33	20.0	44	11.3	230	49.3	64	35.6	115	41.8	47	32.2
下落	10	6.1	163	41.8	29	6.2	22	12.2	142	51.6	84	57.5
合計	165	100.0	390	100.0	467	100.0	180	100.0	275	100.0	146	100.0

(出所)『地価公示』平成17年版より作成。

ばい"以上の割合(39.2%)を大きく上回っている。すなわち,東京都区部南西部においても住宅地及び商業地とも地価回復の傾向が都心部同様に進展していると言える。

東京都区部北東部でも,平成 16 年には住宅地価及び商業地価において,それぞれ 94.4% 及び 81.1% もの割合で,対前年 1% 以上の下落を示していたのに対し,平成 17 年の住宅地価が対前年で 1% 以上下落している地点は 275 地点中 142 地点 (51.6%) また商業地価が対前年で 1% 以上下落している地点は 146 地点中 84 地点 (57.5%)と,都心部及び南西部には及ばないものの,やはり著しい地価回復の傾向を示していると言える6。

III. ヘドニック・アプローチの理論的基礎 と適用上の問題点

ここでは東京都区部における地価関数を構築 するに先立って、その手法としてのヘドニッ ク・アプローチの理論的基礎及び適用上の問題 点を論じることとする。

1. 基本的考え方

はじめに Rosen [1974] は、消費者については効用最大化行動の一環として、立地選択(location choices)を、より具体的には自らの居住する地点の選択を行い、生産者については利潤最大化行動の一環として宅地の供給を行うような一般均衡モデルを構築した。一般に居住のためであれ、商業や工業等生産的用途に供するのであれ、立地選択を行うということは、その地点のもつ様々な立地条件や環境条件に関す

⁶ 因みに,東京都郊外においては住宅地 888 地点 のうち地価が対前年で上昇した地点は 11 地点 (1.2%) であり, 17 地点 (1.9%) で横ばい, 117 地点 (13.2%) でほぼ横ばいであった。同商業地 170 地点についても,地価が対前年で上昇した地 点は 5 地点 (2.9%) であるが, 11 地点 (6.5%) で 横ばい, 15 地点 (8.8%) でほぼ横ばいであった。

すなわち,東京都郊外においても,地価回復が進展しているがその程度は東京都北東部に及ばない。

る特性を選択・購入するのと同様であり、あたかも十分に数が多い差別化された財・サービスを選択・購入するようなものである。たとえば、居住用の土地であれば、都心までの時間距離(通勤時間あるいは通学時間)はどれほどか、あるいは最寄りのスーパーマーケットや病院までの距離はどれほどか、といった諸々の要素を勘案して我々は自らが住むための土地を購入するのである。

Rosen はこのような土地がもつ多様な特性を、ベクトルを用いて表現した。いま、平面上のいずれの土地も、異なるn個の特性、すなわち立地条件、環境条件によって構成されており、i番目の特性の水準を z_i と表すこととする。このとき、特性ベクトルzは、

$$(3-1) z = (z_1, z_2, ..., z_n)$$

と書くことができる。ただし、1 から n までのすべての整数からなる集合を I とおくと、

$$Z_i \ge 0, \ \forall i \in I$$

であること、すなわちどの特性の水準も非負の 実数であることを仮定する。いま、任意の特性 ベクトルzによって構成される集合をZとお くと、Z は非負の実数を要素とする n 次元ベク トル空間 R^n 上の部分集合となるが、この Z を 特性集合とよぶこととする。

次に、競争的均衡(competitive equilibrium) においては、消費者と生産者が宅地を取引することにより、宅地1単位あたりの市場価格が決定される。ところで、この市場価格をpとおくと、pは住宅地の有するすべての特性に1対1で対応する、すなわちpは特性ベクトル $z=(z_1,z_2,...,z_n)$ の連続関数として以下のように表わすことができる(市場価格関数)。

(3-2)
$$p = p(z_1, ..., z_n)$$

結局のところヘドニック・アプローチは、市場価格pを、n個の特性 $z_1, z_2, ..., z_n$ に回帰して価格と地点特性との関係すなわち市場価格関数p(z)を推定し、それをもとに特定の立地条件

あるいは環境条件の異なる2つの地点の地価そ れぞれの推定値(理論値)を導出,これら2地 点の推定(理論)地価の差異をもって立地条件 や環境条件改善の価値と見なす (肥田野 [1997] 第6章)。この場合、立地条件や環境条件が一定 の度合いで地価の形成に寄与する, ひいては立 地条件や環境条件の改善は一定の地価上昇に結 びつくことが理論的に証明されなければそもそ も地価の差異に基づいて立地条件や環境条件の 価値を計測することの正当性が失われる。本来, 立地条件や環境条件の改善の価値は, それが居 住用の土地であるならばそこに立地する家計す なわち消費者が主観的に評価すべきものであ る。ここで、かかる消費者の主観的な評価を表 わす指標として, その地点に対する消費者の支 払い意思を表す価格すなわち付け値(bid price) を採用することとする。

すなわち立地条件や環境条件の価値を計測するための手法としてのヘドニック・アプローチを正当化することは、地価の上昇が相当程度付け値の上昇を反映することを証明することに還元される。以下ではその地点の地価の上昇が、どれだけその地点に対する消費者の支払い意思を表す価格すなわち付け値の差で測った立地条件や環境条件の改善の価値を反映するかを、Rosenによる一般均衡モデルすなわち消費者の効用最大化行動に基づいて付け値及び地価が決定されるメカニズムのミクロ的基礎を明確にしつつ説明することとする。

2. ヘドニック・アプローチの正当性と問題

(1) 消費者の行動

ここでは、1 で述べた、z の特性をもつ土地の需要者たる消費者の行動を説明する。消費者は特性ベクトルz を有する住宅地を1 単位、住宅地以外のすべての財(合成財)をx 単位それぞれ消費する。すなわち、消費者の効用関数は、(3-1) を考慮しつつ、以下 (3-3) のように表わされる。

$$(3-3) u = u(x, z_1, z_2, ..., z_n)$$

ただし、効用関数 u(x, z) に関する仮定を以 下の仮定 3-1 としてまとめておく。

仮定 3-1 効用関数 u(x, z) は (x, z) に関し て2階連続微分可能な準凹関数である。また,合 成財の水準 x 及び $i \in I$ を満たす任意の特性 の水準 zi に関し、以下が成り立っている。

$$(3-4) \qquad \frac{\partial u(x, z_1, z_2, ..., z_n)}{\partial x} > 0$$

$$(3-4) \qquad \frac{\partial u(x, z_1, z_2, ..., z_n)}{\partial x} > 0$$

$$(3-5) \qquad \frac{\partial u(x, z_1, z_2, ..., z_n)}{\partial z_i} > 0, \ \forall i \in I$$

いま、合成財の価格を1とおき(基準財; numeraire), さらに消費者の所得をvとおく と,消費者の予算制約式は,以下(3-6)のよう に表わされる。

(3-6)
$$x+p(z_1, z_2, ..., z_n)=y$$

結局,消費者の直面する効用最大化問題は以 下の条件付き極値問題(P1)として, すなわち 予算制約式 (3-6) のもとで目的関数としての効 用関数 (3-3) を極大化する問題として表わされ る。

(P1)
$$\max_{\substack{x, z_1, z_2, ..., z_n \\ s.t.x + p(z_1, z_2, ..., z_n) = y}} u(x, z_1, z_2, ..., z_n)$$

ここで、ラグランジュ乗数を λ とおくと、 (P1) より以下 (3-7) のラグランジュ関数 L(x, z, λ) を定義することができる。

(3-7)
$$L(x, z_1, z_2, ..., z_n, \lambda)$$

= $u(x, z_1, z_2, ..., z_n)$
+ $\lambda [y-x-p(z_1, z_2, ..., z_n)]$

これより,以下(3-8)のような条件付き極値 問題の1階の必要条件が導き出される。

(3-8)
$$\frac{\partial p(z_1, z_2, ..., z_n)}{\partial z_i}$$
$$= \frac{u_{z_i}(x, z_1, z_2, ..., z_n)}{u_x(x, z_1, z_2, ..., z_n)}, \forall i \in I$$

ただし,

$$u_{z_i} = \frac{\partial u(x, z_1, z_2, ..., z_n)}{\partial z_i},$$

$$u_x = \frac{\partial u(x, z_1, z_2, ..., z_n)}{\partial x}$$

いま, 特性ベクトル z に対する付け値関数 $\gamma(z)$ を以下のように定義する。

定義 3-1 特性ベクトル z に対する付け値関数 とは、その土地に立地する権利を得るべく、そ れでいてある目標効用水準 u* を最低限満たす という条件のもと、消費者が地主に支払っても よいと考えている最大限の土地価格である。す なわち, zに関して連続微分可能な付け値関数 を $\gamma(z)$ とおくと、 $\gamma(z)$ は以下 (3-9) で表わ

(3-9)
$$u(y-\gamma(z_1, z_2, ..., z_n), z_1, z_2, ..., z_n) = u^*$$

(2) 付け値関数と市場価格関数

ここでの目的は、特性ベクトル z に対する市 場価格関数 p(z) は付け値関数 $\gamma(z)$ の包絡線と なることを示すことであるが、それに先立って 市場価格関数 p(z) と付け値関数 $\gamma(z)$ に関する 重要な事実を,いくつかの補題としてまとめて おくこととする。

補題 3-1 市場価格関数 p(z) と付け値関数 $\gamma(z)$ に関し、常に

(3-10)
$$p(z_1, z_2, ..., z_n) \ge \gamma(z_1, z_2, ..., z_n)$$
 が成立する。

(証明) 市場価格関数と付け値関数の定義よ り明らかである。

(証明了)

補題 3-2 i ∈ I を満たす任意の特性の水準 zi に関し,以下 (3-11) が成立する。

$$(3-11) \qquad \frac{\partial^2 \gamma(z_1, z_2, ..., z_n)}{\partial z_i^2} \le 0, \ \forall i \in I$$

(証明) (3-9) の両辺を $i \in I$ を満たす任意 の特性の水準 zi で偏微分することにより,

$$(3-12) \qquad \frac{\partial \gamma(z_1, z_2, ..., z_n)}{\partial z_i}$$

$$= \frac{u_{z_i}(x, z_1, z_2, ..., z_n)}{u_x(x, z_1, z_2, ..., z_n)}, \ \forall i \in I$$

が得られる。この(3-12)の両辺を, z_i でいま 1 度微分すると,

(3-13)
$$\frac{\partial^{2} \gamma(z_{1}, z_{2}, ..., z_{n})}{\partial z_{i}^{2}}$$

$$= \frac{u_{x}^{2} u_{z_{i}z_{i}} - 2u_{x} u_{z_{i}} u_{xz_{i}} + u_{z_{i}}^{2} u_{xx}}{u_{x}^{3}}, \ \forall i \in I$$

が得られる。ただし,

$$u_{xx} = \frac{\partial^{2} u(z_{1}, z_{2}, ..., z_{n})}{\partial x^{2}},$$

$$u_{z_{i}z_{i}} = \frac{\partial^{2} u(z_{1}, z_{2}, ..., z_{n})}{\partial z_{i}^{2}},$$

$$u_{xz_{i}} = \frac{\partial^{2} u(z_{1}, z_{2}, ..., z_{n})}{\partial x \partial z_{i}}$$

ところで仮定により、u(x,z) は (x,z) に関して準凹関数であるから、

$$\begin{vmatrix} 0 & u_x & u_{z_i} \\ u_x & u_{xx} & u_{xz_i} \\ u_{z_i} & u_{z_ix} & u_{z_iz_i} \end{vmatrix} \ge 0 \Longleftrightarrow$$

 $u_x^2 u_{z_i z_i} - 2 u_x u_{z_i} u_{x z_i} + u_{z_i}^2 u_{x x} \le 0$

が成立する(小山 [1995])。さらに,仮定によって $u_x > 0$ であるから,(3-13) よりただちに補題がしたがう。

(証明了)

補題 3-3 問題 (P1) の解,すなわち予算制約式(3-4)のもとで効用関数(3-3)を極大化するような消費ベクトル(x^*,z^*)を,(x^*,z^*)= ($x^*,z_1^*,z_2^*,...,z_n^*$)とおく。この消費ベクトル(x^*,z^*) のもとで市場価格関数 p(z) と付け値関数 $\gamma(z)$ それぞれの勾配に関し,以下 (3-14)が成立する。

(3-14)
$$\frac{\partial p(z_{1}^{*}, z_{2}^{*}, ..., z_{n}^{*})}{\partial z_{i}}$$

$$= \frac{\partial \gamma(z_{1}^{*}, z_{2}^{*}, ..., z_{n}^{*})}{\partial z_{i}}, \forall i \in I$$

(証明) (3-8) 及び (3-12) より自明である。 (証明了)

補題 3-4 補題 3-3 で定義した (P1) のいかなる

解ベクトル (x^*, z^*) のもとにおいても,市場価格関数 p(z) と付け値関数 $\gamma(z)$ とは等しくなる。すなわち,

(3-15) $p(z_1^*, z_2^*, ..., z_n^*) = \gamma(z_1^*, z_2^*, ..., z_n^*)$ が成立する。

(証明) 補題 3-1 により,(P1)の解ベクトル (x^*, z^*) のもとで (3-15) が満たされない場合には,

$$p(z_1^*, z_2^*, ..., z_n^*) > \gamma(z_1^*, z_2^*, ..., z_n^*)$$

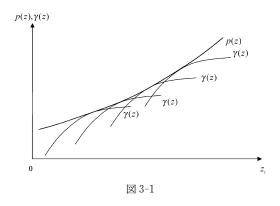
が成り立っていなければならない。このとき,消費者はその地点に立地(居住)するには,土地に対して付け値より高い市場価格を支払わなければならない。このとき,消費者が得る効用は,

$$u(y-p(z_1^*, z_2^*, ..., z_n^*), z_1^*, z_2^*, ..., z_n^*)$$

 $< u(y-\gamma(z_1^*, z_2^*, ..., z_n^*), z_1^*, z_2^*, ..., z_n^*)$
 $= u^*$

となり、目標効用水準 u^* を達成することができなくなる。

よって、(P1) の解ベクトル (x^*, z^*) のもとでは、(3-15) が常に成り立っていなければならない。


(証明了)

定理 3-5 $i \in I$ を満たすある特性の水準 z_i のみを変化させ,他の特性の水準はすべて固定することとする。このとき,縦軸を市場価格関数 p(z) 及び付け値関数 $\gamma(z)$,横軸を z_i とするグラフを描いた場合,立地条件や環境条件に関する特性ベクトル z に対する p(z) は $\gamma(z)$ の包絡線として表わされる。

(証明) 補題 3-1 は,市場価格関数 p(z) が付け値関数 $\gamma(z)$ の常に上方に位置することを意味する。これと,補題 3-3 及び 3-4 は,(P1)のいかなる解ベクトル (x^*,z^*) のもとでも市場価格関数 p(z) は付け値関数 $\gamma(z)$ に上から接することを意味することから,定理がただちにしたがう。

(証明了)

以下の図 3-1 は、補題 3-2 を考慮しつつ、定

理 3-5 の結論すなわち市場価格関数 p(z) が付け値関数 $\gamma(z)$ の包絡線として描かれる様子を図示したものである。ただし,図では,p(z)が z_i に関して下に凸の形状で描かれているが,必ずしもそうであるとは限らない。

(3) 立地条件及び環境条件の改善

次の定理 3-6 は、立地条件や環境条件が異なる地点間の市場価格の差は、当該地点間の付け値の差を上回る、すなわち立地条件や環境条件の改善の価値は、本来付け値で計測されるべきであるとする観点に立った場合、立地条件や環境条件が整備された地点と整備されていない地点の市場価格の差は、立地条件や環境条件の差が微小なものでない限り改善の価値を過大評価することを意味する。

定理 3-6 $i \in I$ を満たすある立地条件や環境条件に関する特性の水準 z_i のみが,(P1) の最適解 $z=z_i^*$ から $z=\tilde{z}_i(z_i^*<\tilde{z})$ に改善されたものとする。このとき,(立地条件や環境条件の改善による)市場価格の上昇額は,消費者の支払い意思額すなわち付け値の上昇額を上回る。すなわち,

(3-16)

$$\gamma(z_1^*, ..., \tilde{z}_i, ..., z_n^*) - \gamma(z_1^*, ..., z_i^*, ..., z_n^*)$$

$$\leq p(z_1^*, ..., \tilde{z}_i, ..., z_n^*) - p(z_1^*, ..., z_i^*, ..., z_n^*)$$

が成立する。また、 z_i の変化が微小である場合には、(3-16) の不等号は等号となる。

(証明) 補題 3-1 及び 3-4 により,以下 (3-

17) 及び (3-18) が成立する。

(3-17)

$$\gamma(z_1^*, ..., z_i^*, ..., z_n^*) = p(z_1^*, ..., z_i^*, ..., z_n^*)$$
(3-18)

$$\gamma(z_1^*, ..., \tilde{z}_i, ..., z_n^*) \leq p(z_1^*, ..., \tilde{z}_i, ..., z_n^*)$$

(3-18) から(3-17)を辺々差し引くことによって,ただちに(3-16) が得られる。定理の後半部分は,p(z)と $\gamma(z)$ の連続性及び補題 3-4 により,自明である。

(証明了)

IV. ヘドニック・アプローチによる地価関 数の推計

1. 本節の目的

さて、前節 III では立地条件や環境条件の違いがどのように地価すなわち土地の市場価格の違いに反映されているかを観察し、それをもとに立地条件や環境条件の価値の測定を行うための手法としてのヘドニック・アプローチの考え方を説明するとともに、その有効性と限界にも言及した。

そこでは、立地条件や環境条件の異なる2地 点間の市場価格の差は付け値の差を過大評価す るが、立地条件や環境条件の差が微小なもので あれば、市場価格の差は付け値の差に収束し、市 場価格の差で立地条件や環境条件の改善の価値 を計測することの正当性が確保されることがわ かった(定理3-6)。

そこで、本節では、住宅地及び商業地の各地点の市場価格を表すデータとして平成17年公示地価を被説明変数とする地価関数を推計する。また、住宅地価関数、商業地価関数とも東京都区部都心部及び同南西部の各別に推計する。その際、IIでとりあげた(当該地点の隣接する)道路幅員や最寄り駅への距離以外に、人口密度、事業所密度、防災面での安全度、地積といったその他の立地・環境条件のみならず、建ペい率、容積率及び用途地域といった地点ごと

の規制条件も説明変数として加える。特に東京都区部南西部住宅地の地価を推計する際の説明変数として、(各地点の)最寄り駅が山手線沿線上のいずれのターミナル駅に最も近いかを表すいわゆる"ターミナル駅ダミー変数"を採用するなど地域ごとの立地・環境条件をよりよく把握できるよう工夫した。

2. 住宅地の地価関数

(1) 地価関数の基本形と説明変数の定義いま,被説明変数としての平成 17 年公示地価を $chikakouji_h17$ (円/ m^2) とおくと,推計すべき住宅地の地価関数 f の基本形として,以下 (4-1) を想定する。

(4-1)

chikakouji_h17

= f (moyorieki_dist, terminal_jikan, pop_density, wr_density, mw_density, boukatiiki, kasai_safety, hinan_safety, toukai_safety, dourofukuin, tiseki, kenpei, youseki, teisen_ dum, chyusen_dum, (terminal_dum))

そして,東京都区部都心部住宅地 165 地点,同南西部住宅地 467 地点のデータをもとに上記地価関数 (4-1) を推計する。ところで,(4-1) 右辺における各説明変数の定義及び単位は以下のとおりである。

moyorieki_dist: 最寄り駅からの距離 (km), $terminal_jikan$: 最寄り駅からターミナル駅までの所要時間(分),東京都区部都心部 165 地点のターミナル駅はすべて東京駅とした。また,東京都区部南西部 467 地点のターミナル駅は,各地点の最寄り駅から見て,その最寄り駅を通る郊外鉄道路線によって結ばれかつ JR 山手線を通るハブ駅中最も近くに位置する終着駅とした 7 , $pop_density$: 人口密度 (人/ km^2),

wr_density: 卸壳·小壳事業所密度 (件/km²), mw density: 医療·福祉事業所密度(件/km²), boukatiiki: 防火地域の指定状況を表す変数,本 来質的変数であるが、阿部・佐々木 [1996] に したがい,防火地域に指定されている場合は3, 準防火地域に指定されている場合は2,指定が ない場合は0を当てはめた。すなわち,ダミー 変数ではないが、防火地域の指定がない場合に 対応する log 0 は無限に負の値をとるため、地 価関数を推計する際の関数形選択に関して対数 変換には適さないことに注意が必要である。 bouka_safety, hinan_safety, toukai_safety: ~ れぞれ, 地震が発生した際の町丁目ごとの火災 の発生しにくさ,避難しやすさ,建物の倒壊し にくさを表すダミー変数であり、危険度が低い (安全性が高い)場合は1,危険度が高い(安全 性が低い)場合は0をそれぞれ当てはめた。以 後, それぞれ火災安全度ダミー, 避難安全度ダ ミー及び倒壊安全度ダミーと表現することとす る。dourofukuin: 各地点が隣接する前面道路の 幅員(m), tiseki: 各地点の地積(m²), kenpei: 建築基準法に定められている建物面積の敷地面 積に対する割合(%), youseki: 建築基準法に定 められている建物延床面積合計の敷地面積に対 する割合(%)。teisen_dum:都市計画法に定め られている用途地域のうち第1種及び第2種低 層住居専用地域の指定を受けていることを表す ダミー変数, chyusen dum:都市計画法に定め られている用途地域のうち第1種及び第2種中 高層住居専用地域の指定を受けていることを表 すダミー変数。(terminal dum): 東京都区部 南西部のみに適用される地点ごとのターミナル 駅を表わすダミー変数(以後、ターミナル駅ダ

ikebukuro_dum, takadanobaba_dum, sin jyuku_dum, sibuya_dum, meguro_dum, gotanda_dum, sinagawa_dum

ミーと表現する)。ターミナル駅ダミーは,以下

7つのダミー変数によって構成される。

たとえば西武池袋線あるいは東武東上線沿線上

⁷ たとえば、JR 中央線荻窪駅を最寄り駅とする 各地点のターミナル駅は荻窪駅から見て JR 山 手線上で最も近くに位置する新宿駅である。し たがって、たとえば西武新宿線沿線の駅を最寄 り駅とする各地点のターミナル駅は、西武新宿 駅ではなく高田馬場駅である。

の地点は,そのターミナル駅が池袋駅であるから,池袋ダミーのみが $1(ikebukuro_dum=1)$ であり,他のターミナル駅ダミーは 0 である。

(2) データの出所

(1) で定義した各説明変数に関するデータの 出所は以下のとおりである。はじめに, moyorieki dist, boukatiiki, dourofukin, tiseki, kenpei, youseki, teisen_dum, chyusen_dum の8変数に ついては、各地点の最寄り駅名とともにすべて 『地価公示』平成 17 年版 (国土交通省 [2005a]) より得ることができる。次に、 については、「国 勢調査東京都区市町村別報告 | (平成12年)の 町丁目ごとの集計結果に基づいている8。また, wr density, mw density はそれぞれ「事業所・ 企業統計調査報告」(平成13年)の町丁目ごと の集計結果より得られた卸売・小売事業所数及 び医療・福祉事業所数を、「国勢調査東京都区市 町村別報告 | に記載されている町丁目ごとの面 積で除して求めた⁹。さらに, bouka_safety, hinan_safety, toukai_safety は, いずれも東京都 が実施した「第5回地域危険度測定調査結果| (平成 12 年) に基づいている10。最後に, termi*nal iikan* は、『駅すぱあと 2003 年』(ヴァル研 究所)を用いて地点ごとに探索した結果に基づ いている。

(3) 住宅地価関数の推計結果

a. 東京都区部都心部

地価関数の基本形 (4-1) に基づいて東京都区 部都心部住宅地価関数を推計した結果は別表 IV-1a にまとめてある。別表にあるように,説 明変数の組み合わせを変えつつ,両側線形回帰 方程式 9本,両側対数線形回帰方程式 8本,片側対数線形回帰方程式 18本(被説明変数のみ対数変換したもの 9本, ダミー変数を除く説明変数のみ対数変換したもの 9本)の,合計 35本の標本回帰方程式を推計した¹¹。尚,標本回帰方程式の推計は,EViews 5.1 (QUANTATIVE MICRO SOFTWARE) を用いて行った。

両側線形回帰方程式 9 本 (別表 IV-1a, No. 1; eq 01~eq 09)のうち,自由度修正済み決定係数 が最大のものは、太枠で囲まれた eq 08 である $(\bar{R}^2=0.600191)$ 。次に,両側対数線形回帰方程 式8本(別表 IV-1a, No. 2; eq 001~eq 008)の うち, 自由度修正済み決定係数が最大のものは シュワルツの情報量基準についても35本の標 本回帰方程式の中で最小となっている(SC= 0.031481)。被説明変数のみ対数変換した片側対 数線形回帰方程式 9 本 (別表 IV-1a, No. 3; eq 0001~eq 0009) のうち, 自由度修正済み決定係 数 が 最 大 の も の は eg 0008 で あ る $(\bar{R}^2 =$ 0.591804)。最後に、ダミー変数を除く説明変数 のみ対数変換した片側対数線形回帰方程式9本 (別表 IV-1a, No. 4; eq 10~eq 90) のうち, 自

^{* 「}事業所・企業統計調査報告」(平成13年)のうち,今回の分析に必要なデータは,東京都ホームページよりダウンロードして得た。URLは以下のとおりである。http://www.toukei.metro.tokyo.jp/jigyou/jg-index.htm(東京都総務局)

^{9 「}国勢調査東京都区市町村別報告」(平成12年) のうち、今回の分析に必要なデータについても 東京都ホームページよりダウンロードして得 た。URLは以下のとおりである。http://www. toukei.metro.tokyo.jp/kokusei/2000/ccindex.htm (東京都総務局)

^{10 「}第5回地域危険度測定調査結果」(平成12年) のうち,今回の分析に必要なデータについても 東京都ホームページよりダウンロードして得 た。URLは以下のとおり。http://www. toshiseibi.metro.tokyo.jp/bosai/chousa 5/ table.htm (東京都都市整備局)

¹¹ 説明変数の選択と組み合わせの変更は、簡略化されたステップワイズ法によった。すなわち、両側線形回帰、両側対数線形回帰、片側対数線形回帰いずれの場合についても得られるすべての説明変数を含めて標本回帰方程式を推計し、その結果有意でない(p値の最も大きい)変数を1つ減らして再び標本回帰方程式を推計し、さらにp値の最も大きい変数を1つ減らして標本回帰方程式を推計、最終的にp値が0.10を超える変数がすべて除かれた時点で(標本回帰方程式の推計を)終了する。ただし,p値が0.10を超える変数が残っていた場合でも、標本回帰方程式の推計は、両側線形回帰、両側対数線形回帰,片側対数線形回帰いずれも最大9本までとした。

由度修正済み決定係数が最大のものは eq 80 である (\bar{R}^2 =0.659462)。

結局,推計された標本回帰方程式35本のうち自由度修正済み決定係数が最大のものは,ダミー変数を除く説明変数のみ対数変換されたeq80であり、シュワルツの情報量基準が最も小さいものは,両側対数変換されたeq006である。この,eq006については自由度修正済み決定係数もeq80のそれに近い値になっていることがわかる。すなわち、ダミー変数を除く説明変数を対数変換することによって、モデルの当てはまりが良くなっていることがわかる。

方程式 eq 80 の標本回帰係数の t 値から判断 した,5% 有意水準または1% 有意水準におい て有意な説明変数は人口密度, 卸売・小売事業 所密度, 道路幅員, 地積及び容積率である12。こ のうち, 人口密度は地価を有意に低下させてお り、卸売・小売事業所密度、地積等他の変数は 地価を有意に高めていることがわかる。卸売・ 小売事業所密度の大きさが買い物の利便性に結 びついているとすれば, 住民にとって買い物に 便利な地点ほど地価が高いという仮説を支持す ることになる。また、阿部・佐々木「1996」に おいても検証されているように, 地積が地価を 押し上げる要因となるのは, 広い土地ほど用途 の選択範囲を広げて高い評価に結びつくからで あると考えられる。尚, eq 006 においては, こ れに防火地域の指定状況が地価を低下させる有 意な説明変数として, ダミー変数としての避難

安全度ダミーが地価を高める有意な説明変数として加わり、逆に、容積率が有意性をもたなくなる。防火指定あるいは準防火指定を受けていることが地価を低下させる理由は、火災の危険を防止すべく門や屋根等の不燃化が要求されるため(建築基準法)、その分住宅建設が困難になるからであると考えられる。

b. 東京都区部南西部

地価関数の基本形 (4-1) に基づいて東京都区 部南西部住宅地価関数を推計した結果は別表 IV-1b にまとめてある。ここでも、都心部住宅地と同様の方法で説明変数の組み合わせを変えながら、両側線形回帰方程式7本、両側対数線形回帰方程式6本、片側対数線形回帰方程式16本(被説明変数のみ対数変換したもの9本、ダミー変数を除く説明変数のみ対数変換したもの7本)の、合計29本の標本回帰方程式を推計した。

両側線形回帰方程式7本(別表 IV-1b, No.1; eq 01~eq 07) のうち,自由度修正済み決定係数 が最大のものは,太枠で囲まれた eq 06 である $(\bar{R}^2 = 0.79795)$ 。両側対数線形回帰方程式6本 (別表 IV-1b, No. 2; eq 001~eq 006) のうち, 自由度修正済み決定係数が最大のものは, eq 005 である ($\bar{R}^2 = 0.822011$)。被説明変数のみ対 数変換した片側対数線形回帰方程式 9 本 (別表 IV-1b, No. 3; eq 0001~eq 0009) のうち, 自由 度修正済み決定係数が最大のものは eq 0006 で ある (\bar{R}^2 =0.837676)。この eq 0006 は、シュワ ルツの情報量基準も29本の標本回帰方程式中 最小になっている(SC = -1.779946)。ダミー変 数を除く説明変数のみ対数変換した片側対数線 形回帰方程式 7 本 (別表 IV-1b, No. 4; eq 10 ~eq 70) のうち, 自由度修正済み決定係数が最 大のものは eq 50 である (\bar{R}^2 =0.786631)。

結局,推計された標本回帰方程式29本のうち自由度修正済み決定係数が最も高いものは,被説明変数のみ対数変換されたeq0006であるが,被説明変数を対数変換することによって,モデルの当てはまりが良くなっていることがわか

¹² 表 IV-1a 中の t 値は, 両側対数線形回帰方程式 eq 001 及び eq 002 を除いては, (懸案の eq 80 及び eq 006 を含めて) すべて White の不均一分散一致標準誤差によって修正された t 値である。すなわち, White の分散不均一検定を行ったところ, eq 001 及び eq 002 を除いた他の 33 本の標本回帰方程式について分散が均一であるという帰無仮説が棄却された。White [1980] によれば, 誤差項の分散が下均一である場合, それぞれの説明変数の分散, したがって標準誤差 (標準偏差) は真の値と一致性をもたなくなり, 通常の t 検定は有効性を失うので修正が必要である (この点, Greene [1997] Chap. 3, 蓑谷 [1996] 第3章も参照せよ)。

る。さらに,東京都区部都心部住宅地の標本回帰方程式に比較して,全般にモデルの当てはまりが良くなっていることもわかる。

この eq 0006 の標本回帰係数の t 値から判断した,5% 有意水準または1% 有意水準において有意な説明変数は最寄り駅からの距離,ターミナル駅までの時間距離,防火地域の指定状況,道路幅員,地積及び容積率,低層住居専用地域ダミー及び中高層住居専用地域ダミーである。さらに,高田馬場ダミー及び五反田ダミーを除くすべてのターミナル駅ダミーも有意になっている。これらのうち,最寄り駅までの距離及びターミナル駅までの時間距離,防火地域の指定状況,さらにはターミナル駅ダミーとしての池袋ダミーが地価を有意に低下させ,道路幅員,地積及び池袋ダミー以外のターミナル駅ダミー等他の変数は地価を有意に高めていることがわかる。

(4) まとめ

以上,東京都区部都心部及び同南西部の住宅地価関数を推計したが,両者に共通するのは,建ペい率が有意な説明変数となっていない点であるが,これは1戸建てよりも高層マンションに居住する割合が高いという東京都区部の住宅事情を反映している(国土交通省 [2005b] 第1部第2章)。また,両者が異なる点は,都心部においては,卸売・小売事業所密度が地価を有意になっては,卸売・小売事業所密度が地価を有意にあっていない点である。このことは,東京都区部南西部の住民が居住地を選択するに際し,必ずしも小売店の多く立地する地点を選好しないことを示している。

モデルの当てはまりの良さという点では,南 西部では自由度修正済み決定係数が高いという 意味で当てはまりの良い住宅地価関数が得られ た。

3. 商業地の地価関数

(1) 地価関数の基本形と説明変数の定義 いま,被説明変数としての平成17年公示地価 を *chikakouji_h*17(円/m²)とおくと,推計すべ き商業地の地価関数fの基本形として,以下(4-2) を想定する。

(4-2)

cjikakouji h17

= f (moyorieki_dist, terminal_jikan, pop density, office_density, boukatiiki, kasai_ safety, hinan_safety, toukai_safety, dourofukuinn, tiseki, kenpei, youseki, syougyou dum)

そして、東京都区部都心部商業地 390 地点、同 南西部商業地 180 地点のデータをもとに上記地 価関数 (4-2) を推計する。ところで、(4-2) 右 辺における各説明変数のうち、(4-1) で用いら れていないものは office_density 及び syougyou_dum のみであるから、その定義、単位 及びデータの出所についてのみ以下で示すこと とする。

office_density: 事業所密度 (件/km²), データの出所は「事業所・企業統計調査報告」(平成 13年) であり,住宅地の $wr_density$ 及び $mw_density$ に同じである。 $syougyou_dum$: 都市計画法に定められている用途地域のうち商業地域の指定を受けていることを表すダミー変数(以後商業地ダミーと表現する)。

(2) 商業地価関数の推計結果

a. 東京都区部都心部

地価関数の基本形 (4-2) に基づいて東京都区 部都心部商業地価関数を推計した結果は別表 IV-2a にまとめてある。ここでも、説明変数の 組み合わせを変えつつ、両側線形回帰方程式 6本、両側対数線形回帰方程式 2本、片側対数線 形回帰方程式 10本(被説明変数のみ対数変換したもの5本、ダミー変数を除く説明変数のみ対数変換したもの5本)の、合計18本の標本回帰 方程式を推計した。

両側線形回帰方程式 6 本 (別表 IV-2a, No. 1; eq 01~eq 06) のうち,自由度修正済み決定係数 が最大のものは,太枠で囲まれた eq 05 である (\bar{R}^2 =0.567851)。両側対数線形回帰方程式 2 本

(別表 IV-2a, No. 2; eq 001 及び eq 002) のうち,自由度修正済み決定係数が大きいものは,eq 002 である (\bar{R}^2 =0.730192)。この eq 002 は,シュワルツの情報量基準も 18 本の標本回帰方程式の中で最小となっている (SC=1.218306)。被説明変数のみ対数変換した片側対数線形回帰方程式 5 本 (別表 IV-2a, No. 1; eq 0001~eq 0005) のうち,自由度修正済み決定係数が最大のものは eq 0003 (\bar{R}^2 =0.724975) である。ダミー変数を除く説明変数のみ対数変換した片側対数線形回帰方程式 5 本 (別表 IV-2a, No. 2; eq 10~eq 50) のうち,自由度修正済み決定係数が最大のものは eq 30 である (\bar{R}^2 =0.58771)。

結局,推計された標本回帰方程式29本のうち,eq002の自由度修正済み決定係数が最大となっているのみならず,シュワルツの情報量基準も最小となっている。また,被説明変数のみ対数変換することによってモデルの当てはまりが良くなっている。

この標本回帰方程式 eq 002 においては,定数項を除くすべての説明変数が有意になっている。このうち,最寄り駅までの距離,人口密度は地価を有意に低下させる要因となっている。さらに,防火指定あるいは準防火指定を受けていること及び商業地の用途地域指定を受けていることも地価を下げる有意な要因として加わる。ターミナル駅(東京駅)までの時間距離,地積,事業所密度等他の変数は地価を有意に高めていることがわかる。尚,住宅地価と顕著に異なる点は,ターミナル駅(東京駅)までの時間距離が大きいことがむしろ地価を高める有意な要因として作用している点である。

b. 東京都区部南西部

地価関数の基本形 (4-2) に基づいて東京都区 部南西部商業地価関数を推計した結果は別表 IV-2bにまとめてある。ここでは、都心部住宅 地と同様の方法で説明変数の組み合わせを変え ながら、両側線形回帰方程式7本、両側対数線 形回帰方程式5本、片側対数線形回帰方程式12 本(被説明変数のみ対数変換したもの5本、ダ ミー変数を除く説明変数のみ対数変換したもの7本)の,合計24本の標本回帰方程式を推計した。

両側線形回帰方程式 7本 (別表 IV-2b, No. 1; eq 01~eq 07) のうち,自由度修正済み決定係数が最大のものは,太枠で囲まれた eq 06 である (\overline{R}^2 =0.665964)。両側対数線形回帰方程式 5本 (別表 IV-2b, No. 2; eq 001~eq 005) のうち,自由度修正済み決定係数が最大のものは,eq 003 である (\overline{R}^2 =0.636281)。被説明変数のみ対数変換した片側対数線形回帰方程式 5本 (別表 IV-2b, No. 1; eq 0001~eq 0005) のうち,自由度修正済み決定係数が最大のものは eq 0003 である (\overline{R}^2 =0.722021)。ダミー変数を除く説明変数のみ対数変換した片側対数線形回帰方程式 7本 (別表 IV-2b, No. 2; eq 10~eq 70) のうち,自由度修正済み決定係数が最大のものは eq 20である (\overline{R}^2 =0.557181)。

結局,推計された 24 本の標本回帰方程式のうち自由度修正済み決定係数が最も高いものは、被説明変数のみ対数変換された eq 0003 であるが、同方程式はシュワルツの情報量基準も小さな値をとっている (SC=0.097968)。また、都心部商業地同様、被説明変数のみ対数変換することによってモデルの当てはまりが良くなっている。

この eq 0003 の標本回帰係数の t 値から判断した,5% 有意水準または1% 有意水準において有意な説明変数は最寄り駅からの距離,ターミナル駅までの時間距離,事業所密度,防火地域の指定状況,ダミー変数としての倒壊安全度ダミー,道路幅員及び容積率である。地積及び商業地ダミーについても p 値 がそれぞれ0.0917 及び0.0501 であり,有意水準を10%にまで引き上げるならば,説明変数としての有意性をもつと判断される。これら地積及び商業地ダミーまでを含む有意な説明変数のうち,地価を下げる要因となっているのは最寄り駅までの距離,ターミナル駅までの時間距離及び防火地域の指定状況である。逆に,事業所密度,倒壊

安全度ダミー,道路幅員,地積,容積率及び商業地ダミーが地価を有意に高めている。尚,都心部商業地価関数との違いは,ターミナル駅までの時間距離が大きいことが地価を有意に低下させている点である。

V. 結 語

本論では、いかなる立地条件や環境条件が近年の東京都区部における地価形成に重要な影響を及ぼしてきたかを、可能な限り多くの要因に回帰させて分析するという目的のもと、東京都区部都心部及び南西部の地価関数を、住宅地及び商業地の別に推計した。

説明変数の組み合わせや関数形を変えつつ推計した結果、都心部住宅地については自由度修正済み決定係数が 0.65 前後の地価関数を、南西部住宅地については自由度修正済み決定係数が 0.80 を上回る地価関数をそれぞれ推計することができた。また、商業地については都心部及び南西部とも、自由度修正済み決定係数が 0.70 を上回る地価関数を推計することができた。

しかるに、地価に影響を及ぼす要因を可能な 限りリストアップすることはできても、それら を網羅することはできなかった。金本・中村・ 矢澤 [1989] 及び中村 [1992] でも述べられて いるように, 地価形成に重要な影響を及ぼす立 地条件や環境条件に関する変数を1つでも説明 変数として組み入れなかった場合, あるいは観 察しなかった場合, その変数が地価に及ぼす影 響を計測するに際してバイアスが生じる可能性 がある。この点,浅見・高「2002」では、東京 都世田谷区の特定の私鉄沿線のいくつかの駅周 辺に立地する 190 物件の住宅価格を、様々な住 環境の要因に回帰するに際し、日照時間、通風 条件,公園 (緑地) との隣接状況,最寄りの学 校や病院までの直線距離等に関する詳細なデー タを収集し、自由度修正済み決定係数が 0.73 を 超える住宅価格関数を推計している。また,金 本・中村・矢澤[1989]では、東京都全域の住

宅地価関数を推計するに際し, 大気中の二酸化 窒素濃度等大気汚染の度合いを示す変数に関 し、原系列とその2乗項をともに説明変数とす ることによって、また、一部の変数に Box-Cox 変換を施すことによって,関数形を工夫した。そ れによって自由度修正済み決定係数が0.90を 超える非常に当てはまりの良い住宅地価関数を 推計することができた。さらに,矢澤・金本 [2000] では、「公園など緑地施設面積や騒音の 程度といった住環境の影響はごく狭い範囲にし か及ばない | という前提のもと, GIS (地理情報 システム)を活用することにより, 従来の 500 m メッシュや1km メッシュあるいは本論でも用 いたような町丁目ごとのデータよりはるかに地 点の特性を正確かつきめ細かく反映し得るデー タを作成し、川崎市の住宅地価関数の推計に利 用した。

したがって本研究の改善の方向は、地価形成 及び変動の真の要因を探るべく, ① たとえば 住宅地であれば公園の面積や公園までの距離, また商業地であれば歩道の幅員や駐車場の駐車 可能台数といった本論であつかわなかった地価 に大きな影響を与えると思われる要因を説明変 数として加え、② 町丁目よりもきめ細かい範 囲で, ① に関するデータを入手・作成し, ③ 関 数形及び説明変数の選択のプロセスをより精緻 化することによって、より当てはまりの良い、か つ時間を通じて係数の値が安定しているという 意味で頑健な地価関数を構築することである。 たとえば, 奈良 [2005] でとりあげた, 市街地 再開発事業, 土地区画整理事業等各種市街地開 発事業がいかに商業地の利便性を高めるかとい うことに関しては、① で掲げたような歩道や駐 車スペースの拡張に集約されるからである。

参 考 文 献

[1] 阿部・佐々木 [1996],「ゾーニングが住宅 地化に及ぼす影響に関する計量分析」, 応 用地域学会第10回研究発表大会発表論 文.

- [2] 安藤朝夫 [1997],「地価の空間構造」,『都 市と土地の経済学』,日本評論社.
- [3] 浅見・高 [2002],「都市計画と不動産市場: 住宅価格を左右する住環境」,『不動産市場 の経済分析』,日本経済新聞社。
- [4] Greene, W.H [1997], 'Econometric Analysis,' Prentice-Hall.
- [5] 肥田野登 [1997],『環境と社会資本の経済 評価』, 勁草書房。
- [6] Kanemoto, Y. [1988], "HEDONIC PRICES AND THE BENEFITS OF PUBLIC PROJECTS," Econometrica, Vol. 56, 981-989.
- [7] 金本良嗣 [1992],「ヘドニック・アプローチによる便益評価の理論的基礎」,『土木学会論文集』No. 449, 47-56.
- [8] Kanemoto, Y. and Nakamura, R. [1986], "A New Approach to the Estimation of Structural Equations in Hedonic Models," Journal of Urban Economics, Vol. 19, 218-233.
- [9] 金本・中村・矢澤 [1989],「ヘドニック・アプローチによる環境の価値の測定」,『環境科学会誌』2, 251-266.
- [10] 建設省建設政策研究センター [1998],『環境などの便益評価に関する研究―へドニック法と CVM の適用可能性についてー』.
- [11] 国土交通省 [2004], 『土地白書』平成 16 年版, 国立印刷局.

- [12] 国土交通省 [2005a],『地価公示』平成 17 年版,国立印刷局.
- [13] 国土交通省 [2005b],『土地白書』平成 17 年版,国立印刷局。
- [14] 小山昭雄 [1995],『経済数学教室 5 微分 積分の基礎 上』,岩波書店.
- [15] 蓑谷千凰彦 [1996], 『計量経済学の理論と 応用』, 日本評論者.
- [16] 中村良平 [1992],「ヘドニック・アプローチにおける実証分析の諸問題」,『土木学会論文集』No. 449, 57-66.
- [17] 奈良 卓 [2005],「東京都区部の地価変動 に関する実証分析」,『八戸大学紀要』第 30 号
- [18] 日本銀行調査統計局 [2003], 『パーソナルコンピュータのヘドニック回帰式一企業物価指数・企業向けサービス価格指数における品質調整法一』。
- [19] Rosen, S [1974], "Hedonic Prices and Im-plicit Markets: Product Differentiation in Pure Competition," *Journal of Political Economy*, Vol. 82, 34–55.
- [20] White, H [1980], "A Heteroskedasticity-Consistent Covariance Matrix and Direct Test for Heteroskedasticity," *Econometrica*, Vol. 48, 817–838.
- [21] 矢澤・金本 [2000],「ヘドニック・アプローチによる住環境評価—GIS の活用と推定値の信頼性」,『季刊 住宅土地経済』2000年春季号,10-19.

表 IV-1a 東京都区部都心部住宅地価関数の推計結果 (No.1)

西側線形	•	日亦物, 討田弥教	被説明変数,説明変数とも対数変換せず。)	ئۆ ئەرە)					
eq0		13X8A, WU712X							
JIST 3. KAN KAN — 6		eq02	eq03	eq04	eq05	90bə	eq07	80bə	ed09
MST 3.	1412101	1412443	1413072	05248	1391519	1361159	1379376	1353629	1360930
KAN – e	3.967536**	4.054403**	4.063727 **	4.045977 **	3.942877 **	3.958682 **	4.030882 **	3.811313**	3.789088**
KAN	-141016.2 -1.876865	-140981.1 -1.875049	-140636.5 -1.909854	-138902.2 -1.830092	$\begin{array}{c c} -139737.1 \\ -1.85962 \end{array}$	-140801.1 -1.876855	-139214.5 -1.867065	-135806 -1.817812	-140122.7 -1.929339
9	-5610.636 -1.888755	-5614.775 -1.994045 *	-5623.783 -1.997667 **	-5624.266 -2.006734 *	-5622.106 -2.013157 *	-5869.493 -2.099693 **	-5898.557 -2.113016 *	-6001.128 -2.141926 *	-6295.038 -2.234075 *
	-18.05862 -6.823425**	-18.06133 $-6.986319**$	-18.02977 -7.235964 **	-18.13553 -7.904778**	-18.11587 $-7.940048**$	-17.73754 -7.85775 **	-17.83276 $-7.919247**$	-17.61198 -7.796334**	-17.53839 -7.619422**
WR_DENSITY 2.99	197.5949 2.991933 **	197.6088 3.001066**	197.3161 3.038465 **	187.8391 2.829694**	188.3535 2.855394 **	190.9713 2.92771 **	188.0613 2.902114 **	188.386 2.914933 **	192.1288 3.201242**
MW_DENSITY	-104.1182 -0.180654	$\begin{array}{c} -103.7162 \\ -0.185328 \end{array}$	-101.1609 -0.182032						
BOUKATIIKI	-56885.5 -0.722441	-56963.87 -0.739462	-57032.76 -0.743804	-60113.4 -0.837706	-58577.56 -0.814444	$\begin{array}{c} -58283.31 \\ -0.8109 \end{array}$	-43462.63 -0.616002		
KASAI_SAFETY —	-2127.99 -0.076924	$\begin{array}{c} -2109.937 \\ -0.076088 \end{array}$							
HINAN_SAFETY	368.2682 0.009476								
TOUKAL_SAFETY —	-25657.85 -0.467753	-25495.73 -0.511344	-26553.91 -0.518379	-26011.69 -0.51184	-27011.82 -0.531165				
DOUROFUKUIN 3.23	40602.81 3.235339**	40608.51 3.301624 **	40568.75 3.339176 **	40603.84 3.380552**	40589.09 3.391045**	40367.58 3.378626 **	40709.94 3.433119 **	38610.65 3.454423**	39107.99 3.686694 **
TISEKI	289.5616 1.937424	289.5672 1.942659	289.6745 1.951575	290.4964 1.94374	290.2956 1.952708	290.3656 1.961521	290.0578 1.963397	286.4725 1.917481	286.8189 1.923757
KENPEI –	-8562.404 -1.341303	-8562.73 -1.346036	-8569.56 -1.350698	-8377.139 -1.359015	-8358.713 -1.354359	-8266.504 -1.339884	-8227.78 -1.339332	-8720.565 -1.471533	-8496.607 -1.502949
YOUSEKI308.6099	308.862 0.873838	305.9554 0.869144	306.4757 0.868868	328.5972 0.871476	326.35 0.98264	160.5076 0.983469	59.33613 0.664846	0.222155	
TEISEN_DUM	25663.07 0.364074	25704.18 0.364566	24815.02 0.370753	25014.2 0.374283	32552.82 0.614371	33251.13 0.629954			
CHYUSEN_DUM —	-5179.676 -0.163986	-5184.682 -0.165001	-5535.794 -0.184173	-5977.669 -0.201969					
R-squared	0.621787	0.621787	0.621782	0.621685	0.621631	0.621262	0.620841	0.619694	0.619562
Adjusted R-squared	0.583712	0.586487	0.58922	0.591818	0.594428	0.596669	0.598825	0.600191	0.6026
Durbin-Watson stat	1.196579	1.19653	1.196863	1.19523	1.195875	1.186016	1.187055	1.178385	1.17859
Schwarz criterion	27.58344	27.5525	27.52157	27.49088	27.46007	27.4301	27.40027	27.37235	27.34175

表 IV-1a 東京都区部都心部住宅地価関数の推計結果 (No. 2)

	両側対数線形((被説明変数及びグミー変数を除く説明変数を対数変換。	/ミー変数を除く	説明変数を対数変	5換。)			
	eq001	eq002	eq003	eq004	eq005	900bə	eq007	eq008
C	15.17287	15.12006	15.08921	13.72873	13.7624	13.4383	13.35776	14.06604
	10.17226 **	10.33717**	7.689691 **	16.22819 **	16.29138 **	16.45652**	16.20193 **	19.83852 **
LOG (MOYORIEKI_DIST)	-0.070303 -1.646652	-0.071803 -1.714584	-0.072104 -1.69224	-0.068621 -1.599893	-0.071318 -1.681054	-0.067027 -1.587957	-0.066088 -1.525926	-0.064149 -1.490362
LOG(TERMINAL_JIKAN)	$\begin{array}{c} -0.092038 \\ -1.036486 \end{array}$	-0.091564 -1.034996	$\begin{array}{c} -0.095866 \\ -1.167013 \end{array}$	-0.087609 -1.113986	-0.080171 -1.02968			
LOG (POP_DENSITY)	-0.279581 -6.881695 **	-0.279775 $-6.911729**$	-0.278857 -5.598706**	-0.288397 -5.863632**	-0.295641 -6.188389**	-0.303722 $-6.419601**$	-0.298501 -7.081977 **	-0.300643 -7.157916**
LOG (WR_DENSITY)	0.082331	0.083257 2.661346**	0.0838	0.080189	0.07998	0.081762 3.141042**	0.078702 2.908524 **	0.07488 2.771394 **
LOG (MW_DENSITY)	-0.046359 -1.339058	-0.047269 -1.382126	-0.047192 -1.555526	-0.03445 -1.001966	-0.036834 -1.091549	-0.03904 -1.167674		
BOUKATIIKI	-0.146354 -1.858153	-0.141414 -1.898957	$-0.142015 \\ -1.79257$	-0.15905 -2.05752*	-0.159067 -2.07047 *	-0.155252 $-1.991946*$	-0.191375 -2.479269*	-0.157499 $-2.137575*$
KASAI_SAFETY	0.040465 0.725673	0.037782 0.700783	0.033594	0.032878 0.841834				
HINAN_SAFETY	0.096503	0.097521	0.092607	0.096599	0.104687	0.109605 2.02104*	0.110925 2.242562*	0.116021 2.313908 *
TOUKALSAFETY	-0.019636 -0.223481	-0.020277 -0.23171						
LOG (DOUROFUKUIN)	0.27564 4.395249 **	0.274859 4.406288 **	0.274807 4.719659 **	0.278524 4.82804 **	0.283481 4.854488**	0.28073 4.813247 **	0.292258 4.897373 **	0.299724 4.998498 **
LOG (TISEKI)	0.196113	0.195651 5.695639 **	0.195339	0.192085	0.191364 5.301803**	0.190431 5.335378**	0.180339 4.239751 **	0.179853 4.237468**
LOG (KENPEI)	-0.395775 -1.173863	-0.39636 -1.179612	-0.392266 -0.801685					
LOG (YOUSEKI)	0.210122	0.217461 1.632234	0.218692	0.189504	0.195747	0.22165	0.222017	0.090945
TEISEN_DUM	0.096429 0.802941	0.109483	0.111293	0.102576	0.109961	0.113884 1.396211	0.120867	
CHYUSEN_DUM	-0.009648 -0.198314							
R-squared	0.684563	0.684475	0.684357	0.681341	0.680417	0.678474	0.642689	0.639421
Adjusted R-squared	0.651242	0.653585	0.655861	0.65497	0.656339	0.656601	0.621942	0.62093
Durbin-Watson stat	1.205169	1.207226	1.199659	1.149721	1.141946	1.171764	1.117654	1.121078
Schwarz criterion	0.172571	0.140806	0.10914	909980.0	0.057462	0.031481	0.081245	0.059403

⁽注意1)表中,各説明変数に対応する上段の数字は標本回帰係数を,下段の数字はも値を,それぞれ表す。

⁽注意 2) **は1% 有意水準で有意であること, * は5% 有意水準で有意であることをそれぞれ示す。 (注意 3) イタリック体 (斜体) で表されている方程式の t値は, White の不均一分散一致標準誤差によって修正されたものである。 (注意 4) 表中 R-squared, Adjusted R-squared はそれぞれ決定係数及び自由度修正済み決定係数をさす。 (注意 5) 表中 Durbin-Watson stat, Schwarz criterion はそれぞれダービン・ワトソン比及びシュワルツの情報量基準をさす。

表 IV-1a 東京都区部都心部住宅地価関数の推計結果 (No.3)

	片側対数線形	(被説明変数のみ対数変換。)	;对数変換。)				•		
	eq0001	eq0002	eq0003	eq0004	eq0005	9000bə	eq0007	eq0008	eq000p
C	14.08684	14.08645	14.06527	14.07197	13.77238	13.79047	13.84128	13.84102	13.93625
	34.19475 **	35.05616**	34.31904**	34.48501 **	65.30454 **	67.77362**	71.20972**	71.69999 **	79.39574 **
MOYORIEKI_DIST	$\begin{array}{c} -0.185811 \\ -1.919199 \end{array}$	-0.18583 -1.922203	-0.187566 -1.96156	-0.189915 $-2.009319*$	$\begin{array}{c} -0.184711 \\ -1.965008 \end{array}$	-0.175916 -1.839627	$\begin{array}{c} -0.181131 \\ -1.91728 \end{array}$	-0.173993 -1.897771	-0.167872 -1.833275
TERMINAL_JIKAN	-0.007974 $-2.186586*$	-0.007979 $-2.208842*$	-0.007969 -2.211956*	-0.007795 $-2.164383 *$	-0.00731 $-2.111586*$	-0.007415 $-2.144328*$	-0.008122 -2.342348 *	-0.007617 -2.26249 *	-0.00812 $-2.386391*$
POP_DENSITY	-0.0000222 -6.638561 **	-0.0000221 -6.624026**	-0.0000221 -6.660953**	-0.0000225 -6.901816**	-0.000023 -7.40781**	-0.0000236 -8.277022**	-0.0000234 -8.196555**	-0.0000237 -8.248613 **	-0.0000246 -8.784374**
WR_DENSITY	0.000326 3.869951 **	0.000326 3.901418**	0.000327 4.018896**	0.000329 4.054052 **	0.000321 3.908722 **	0.000271 3.806199**	0.000273 3.835347 **	0.000265 3.843821 **	0.000272 3.951097**
MW_DENSITY	-0.000648 -0.95253	$\begin{array}{c} -0.000648 \\ -0.960153 \end{array}$	-0.000657 -0.999547	-0.00068 -1.051596	-0.000527 -0.819201				
BOUKATIIKI	$\begin{array}{c} -0.158322 \\ -1.617971 \end{array}$	$\begin{array}{c} -0.158353 \\ -1.626541 \end{array}$	-0.155787 -1.621211	-0.155348 -1.621945	-0.172819 -1.88354	-0.186896 -2.14642 *	$\begin{array}{c} -0.140981 \\ -1.888565 \end{array}$	-0.143807 -1.928851	-0.152494 -2.096232 *
KASAI_SAFETY	0.019156 0.465084	0.019048	0.016813						
HINAN_SAFETY	0.065544	0.065407	0.065515	0.068819	0.071012 1.355416	0.065224	0.069007	0.069639	
TOUKAL_SAFETY	$\begin{array}{c} -0.000601 \\ -0.007301 \end{array}$								
DOUROFUKUIN	0.048786 4.754312 **	0.048786 4.77449 **	0.048799 4.796607 **	0.049129 4.871866**	0.049402 4.95537 **	0.049666 5.065748**	0.050373 5.212799**	0.050486 5.202274 **	0.051977 5.516694 **
TISEKI	0.000288	0.000288	0.000288	0.000287	0.000286	0.000291	0.00029	0.00029	0.00029
KENPEI	-0.005611 -0.773212	-0.005609 -0.779517	-0.005584 -0.77323	-0.005561 -0.770634					
YOUSEKI	0.000444	0.000444	0.00048	0.000491	0.000436	0.000462 0.899147			
TEISEN_DUM	0.067062	0.067104	0.079224	0.082132	0.080626 0.944465	0.085638	0.025294		
CHYUSEN_DUM	-0.009264 -0.21226	-0.009274 -0.21363							
R-squared	0.618848	0.618848	0.618762	0.618527	0.615559	0.613655	0.612194	0.611716	0.608687
Adjusted R-squared	0.580477	0.583274	0.58594	0.58841	0.587919	0.588568	0.589676	0.591804	0.59124
Durbin-Watson stat	1.169094	1.168857	1.168543	1.167473	1.099375	1.097395	1.097904	1.098826	1.099444
Schwarz criterion	0.331506	0.300561	0.269842	0.239514	0.216319	0.190313	0.163144	0.133431	0.110256

表 IV-1a 東京都区部都心部住宅地価関数の推計結果 (No. 4)

	片側対数線形 (グミー変数を除く	片側対数線形(ダミー変数を除く説明変数のみ対数変換。	数変換。)					
	oIpa	eq20	eq30	eq40	eq50	09bə	eq70	08bə	06 ba
C	3287210 1.893237	3238594 1.836795	3237111 1.838874	3427216 2.023812 *	3571427 2.078457 *	3652326 2.175634 *	3588733 2.159028 *	3244722 2.058647 *	2754908 1.786817
LOG(MOYORIEKI_DIST)	$\begin{array}{c} -51610.51 \\ -1.526076 \end{array}$	-52991.3 -1.608466	$\begin{array}{c} -53716.01 \\ -1.652131 \end{array}$	-52234.79 -1.579376	-52121.7 -1.580232	-51997.34 -1.581339	-51941.69 -1.586369	-48011.85 -1.500503	-46900.48 -1.382206
LOG(TERMINAL_JIKAN)	-60437.34 -0.863206	-60000.28 -0.86049	-59216.26 -0.854834	-57368.6 -0.821879	-58909.71 -0.839879	-65277.35 -0.96178	-70622.42 -1.049059		
LOG(POP_DENSITY)	-228286.4 -5.055184**	-228465.1 -5.058608**	-230024 -5.288575 **	-225830.4 -5.147124 **	-227916 $-5.231942**$	-229598.2 -5.301421**	-226484.6 -5.478381 **	-235249.1 -5.776684 **	-232201.5 -6.223809 **
LOG(WR_DENSITY)	43384.9 2.242089 *	44237.4 2.372949 *	44312.05 2.386854 *	45762.99 2.503738 *	43951.51 2.372711 *	44331.08 2.397343 *	45000.66 2.426961 *	46068.76 2.500471 *	51140.47 2.142769 *
LOG(MW_DENSITY)	-24274.45 -0.919084	-25111.8 -0.984197	-25653.44 -1.022999	-29312.25 -1.210958	-28262.34 -1.156086	-28277.9 -1.163507	-27823.18 -1.150545	-28709.06 -1.19241	
BOUKATIIKI	-38835.13 -0.539359	-34288.07 -0.496958	-34465.4 -0.500857						
KASAI_SAFETY	11501.29	9031.194							
HINAN_SAFETY	19601.88	20538.65 0.542127	21326.27 0.563246	26308.49 0.682754	26872.04 0.707133				
TOUKAL_SAFETY	-39447.48 -0.756848	-40037.37 -0.770536	$\begin{array}{c} -35123.03 \\ -0.660708 \end{array}$	-36339.58 -0.698415	-37189.61 -0.711329	$\begin{array}{c} -24036.25 \\ -0.487308 \end{array}$			
LOG(DOUROFUKUIN)	226651 3.67526 **	225932.1 3.707094 **	227133.9 3.738636 **	216273 3.736885 **	222182.1 3.871279**	224123.4 3.958982 **	222470.3 3.931679 **	222117.5 3.92636 **	221731.2 3.841904 **
LOG(TISEKI)	174958.9 5.705778**	174533.2 5.715937 **	174276.6 5.717914 **	174334.2 5.772208 **	174398.2 5.78221 **	174668.8 5.823733 **	174289.4 5.821146 **	173356 5.827899 **	156844 4.0364 **
LOG(KENPEI)	-623239.4 -1.41244	-623777.6 -1.412918	-622146.7 -1.412277	-652761.1 -1.528453	-632640.4 -1.522391	-641774.4 -1.564453	-634074.4 -1.546168	-609207.6 -1.516521	-452071.4 -1.117032
LOG(YOUSEKI)	169035.3 1.965124	175791 2.215783*	177563.8 2.243132*	148727.3	113031.1 2.169901 *	112686.9	111929.2	131177.5 2.361788*	88207.4 1.269317
TEISEN_DUM	38099.82 0.515518	50116.01 0.927856	52341 0.983065	36233.95 0.626908					
CHYUSEN_DUM	-8881.219 -0.266776								
R-squared	0.681247	0.681141	0.681052	0.68037	0.679887	0.679314	0.678999	0.676814	0.632216
Adjusted R-squared	0.647576	0.649924	0.652258	0.653918	0.655769	0.657499	0.659478	0.659462	0.615818
Durbin-Watson stat	1.177681	1.180518	1.178242	1.167995	1.169161	1.156286	1.1529	1.172417	1.105167
Schwarz criterion	27.44867	27.41696	27.3852	27.35529	27.32476	27.2945	27.26345	27.23819	27.30792

(注意1) 表中, 各説明変数に対応する上段の数字は標本回帰係数を,下段の数字はは値を,それぞれ表す。 (注意2) **は1%有意水準で有意であること,*は5%有意水準で有意であることをそれぞれ示す。 (注意3) イタリック体 (斜体) で表されている方程式の1値は,White の不均一分散一致標準誤差によって修正されたものである。 (注意4) 表中 R-squared, Adjusted R-squared はそれぞれ決定係数及び自由度修正済み決定係数をさす。 (注意5) 表中 Durbin-Watson stat, Schwarz criterion はそれぞれガービン・ワトソン比及びシュワルツの情報量基準をさす。

八戸大学紀要 第32号

表 IV-1b 東京都区部南西部住宅地価関数の推計結果 (No. 1)

	面側線形(被計	。 说明変数,説明変				11×13×1×1×11	MIX (110.1)
	eq01	eq02	eq03	eq04	eq05	eq06	eq07
С	390655.1	390775.3	383991.3	397221.9	400785.9	383395.3	395512.1
	11.47578 **	11.5208 **	9.569763 ***	10.21626**	10.26066 ***	10.70627 **	11.27838 * *
MOYORIEKI_DIST	-47754.68	-47745.48	-47772.1	-48189.1	-48338.59	-48101.26	-48567.52
	-10.86652 **	-10.87444 **	-10.93037 **	-11.06818**	-11.12788 **	-11.15172 **	-11.30494 * *
TERMINAL_JIKAN	-4351.277	-4352.087	-4366.687	-4385.34	-4331.541	-4311.466	-4300.232
	-7.25501 **	-7.271125 *	-7.575254 **	-7.581565 * *	-7.574528 *	-7.573886 *	-7.56678 * *
POP_DENSITY	-1.283581 -1.687977	-1.293787 -1.722996	-1.297615 -1.738032	-1.160017 -1.600694	-1.260843 -1.76627	-1.179291 -1.686586	-1.338456 -1.956574
WR_DENSITY	-4.437068 -0.163423						
MW_DENSITY	166.5333	153.3755	152.7231	153.7574	152.0255	147.9516	135.7277
	1.571209	1.898423	1.898508	1.906496	1.894029	1.854185	1.685243
BOUKATIIKI	-32580.62	-32570.45	-32595.48	-31454.99	-31135.12	-31216.19	-30869.02
	-4.800145 * *	-4.80771 * *	-4.816529★★	-4.939226 * *	-4.959628 *	-4.974087 * *	-4.969235 **
KASAI_SAFETY	7192.021 0.860087	7273.5 0.874133	7082.003 0.864342	7409.453 0.90485			
HINAN_SAFETY	11765.01 1.458009	11839.06 1.475428	11863.23 1.480316	12126.22 1.515945	12389.6 1.547927	11250.7 1.466726	
TOUKAI_SAFETY	-20145.51 -1.162468	-20226.74 -1.170639	-20074.86 -1.166016	-21016.17 -1.219055	-19196.12 -1.138902		
DOUROFUKUIN	10375.36	10398.79	10393.16	10371.64	10515.75	10505.43	10513.07
	4.59336 **	4.617686**	4.624532**	4.539061 **	4.628602 ***	4.623278 ***	4.609254 ***
TISEKI	196.6252	196.9818	196.9606	197.6098	198.7201	200.0635	200.7757
	5.341566 **	5.38764**	5.393809 ***	5.511592 * *	5.628594 **	5.697036 **	5.786733 ***
KENPEI	482.0294 0.691952	480.0064 0.690708	482.7563 0.695686				
YOUSEKI	195.4201	195.3067	193.6473	247.292	248.2205	241.1414	247.6061
	1.541875	1.542079	1.537558	2.790871 **	2.810682 **	2.747044 ***	2.847016 **
TEISEN_DUM	34228.31	34584.91	34219.46	36813.66	37490.32	35880.7	35646.48
	2.677982 ***	2.76882 ***	2.831918 **	3.164172 ***	3.222967 **	3.163867 **	3.148235 **
CHYUSEN_DUM	17241.06	17484.41	17213.28	18607.48	18661.83	17326.32	16023.84
	1.796568	1.871952	1.908932	2.029902 *	2.035115 *	1.949978	1.842385
IKEBUKURO_DUM	-7143.598 -0.43854	-7759.863 -0.49169					
TAKADANOBABA_DUM	29981.09	29423.95	37102.47	36714.82	36384.19	36454.55	37253.15
	1.773626	1.783187	6.040914 **	5.998526 ★ *	5.977245 ***	6.007198 ***	6.194188 ***
SINJYUKU_DUM	95381.29	94786.87	102451.4	101746.7	100967.5	100763.9	100800.4
	5.720534 ***	5.838391 **	19.53741 ***	19.8408 ***	19.97197 ***	20.06425 ***	20.13072 ***
SIBUYA_DUM	131563.6	130931	138570.9	137835.5	137818.3	137844.9	138453.4
	7.654371 ***	7.781163 **	22.15924 ***	22.34673 **	22.33233 ***	22.39126 ***	22.67974 **
MEGURO_DUM	151609.1	151137.2	158677.8	158144.5	158112.3	158220	157959.9
	9.992736 **	10.32718**	16.43503 ***	16.26781 **	16.0398 ***	16.07364 **	16.54442 ***
GOTANDA_DUM	43178.26	42650.34	50223.17	49706.43	49585.25	49279.34	45478.29
	2.498571 *	2.4756 *	4.615447 **	4.626651 ***	4.636698 ***	4.631379 ***	4.620896 **
SINAGAWA_DUM	57897.68	57260.86	64767.36	64349.36	64611.75	66112.81	65353.16
	3.255103 ***	3.283187 ***	5.36246 ***	5.32924 **	5.424462 ***	5.724441 ***	5.673282 ***
R-squared	0.806219	0.806204	0.806192	0.805921	0.805586	0.805321	0.804456
Adjusted R-squared	0.796617	0.797059	0.797501	0.797672	0.797775	0.79795	0.797504
Durbin-Watson stat	1.597856	1.598265	1.596863	1.597406	1.598233	1.595995	1.59646
Schwarz criterion	24.49048	24.47739	24.46429	24.45253	24.44109	24.42929	24.42056

⁽注意 1) 表中,各説明変数に対応する上段の数字は標本回帰係数を,下段の数字は t 値を,それぞれ表す。

⁽注意 2) **・は 1% 有意が変数に対応する上表の数子は標本自動作数を、「民の数子は い間と、てんてれるす。 (注意 2) **・は 1% 有意水準で有意であること、** は 5% 有意水準で有意であることをそれぞれ示す。 (注意 3) イタリック体 (斜体) で表されている方程式の t 値は、White の不均一分散一致標準誤差によって修正されたものである。 (注意 4) 表中 R-squared、Adjusted R-squared はそれぞれ決定係数及び自由度修正済み決定係数をさす。 (注意 5) 表中 Durbin-Watson stat, Schwarz criterion はそれぞれダービン・ワトソン比及びシュワルツの情報量基準をさす。

奈良 卓:東京都区部の地価変動に関する実証分析

eq0001	eq0002	eq0003	eq0004	eq0005	eq0006	eq0007	eq0008	eq0009
	_		-	-			-	-
12.87105	12.87192	12.90197	12.88555	12.90902	12.87802	12.88677	12.90743	12.9250
180.5912 ★★	181.1346 ★★	201.4688 ***	224.6081 **	191.9534 ★★	202.7753 ★★	198.8534 ★★	202.02 **	204.8445 ₩
-0.134747	-0.134681	-0.135562	-0.133991	-0.133984	-0.133817	-0.133774	-0.137809	-0.1375
−15.2039 **	−15.19711 **	−15.45777**	−15.60673 **	−15.61517 **	−15.63321 **	−15.64892 **	−16.84118 **	-16.85248 *
-0.008659 -8.096085 *	-0.008665 -8.116248 *	-0.008701 -8.135206 *	-0.008585 -8.559026 ★★	-0.008538 -8.79902 ★★	-0.008509 -8.780216 ★★	-0.008316 -8.730597 * *	-0.008596 -9.241267**	-0.00847 -9.173743*
-0.00000106	-0.00000113	-0.000000834	0.333020 4-1	0.7 3302 4-4	0.700210 4-4	0.130331 4-1	3.241207 4-1	3.1131434
-0.00000106 -0.753518	-0.00000113 -0.810816	-0.617498						
-0.000032 -0.600636								
0.000328	0.000233	0.000236	0.000218	0.00022	0.000215	0.000204		
1.554199	1.509014	1.524384	1.427091	1.446535	1.418321	1.352068		
-0.070664	-0.07059	-0.068153	-0.069695	-0.069611	-0.069449	-0.069085	-0.068422	-0.068
−5.767694 **	−5.767462 **	−5.969307 **	−6.288548 **	-6.292078 ★★	-6.28493 ❤	−6.289459 **	−6.223814 **	−6.23352 *
0.018789	0.019376	0.020126	0.022242	0.02281	0.021321			
1.078923	1.115052	1.161459	1.296383	1.343157	1.256736			
0.023601	0.024135	0.024689	0.026207	0.026148	0.023633	0.025496	0.021688	
1.370474	1.401995	1.437572	1.539716	1.537546	1.469165	1.584844	1.335698	
-0.03964	-0.040225	-0.042273	-0.037334	-0.037948				
-1.03432	-1.049122	-1.104579	-0.994522	-1.013303				
0.020414	0.020583	0.020539	0.020757	0.02078	0.020743	0.021264	0.020911	0.0210
5.036482 **	5.103432 **	4.964318	5.059655 **	5.072538 **	5.062207 **	5.200501 **	5.108909 **	5.123684 *
0.000388 7.301876 **	0.00039 7.414186 **	0.000392 7.578161 **	0.000397 7.644962 ***	0.000397 7.650257 **	0.000399 7.737769 **	0.000404 7.946748 ***	0.00041 8.327944**	0.0004 8.438159*
0.001044	0.00103	7.570101	7.044302	7.030237	1.131109 4-4	1.340140	0.321344	0.4301334
0.743859	0.735367							
0.000487	0.000486	0.000601	0.000576	0.000581	0.000571	0.000566	0.000572	0.0005
1.972186 *	1.968155 *	3.304182 **	3.189667 ★★	3.24632 ★★	3.204008 **	3.177406 ★★	3.242421 **	3.276224 *
0.087045	0.089615	0.095244	0.094472	0.095744	0.09278	0.095028	0.091501	0.0915
3.414164 **	3.577419 ★★	3.931201 **	3.895834 **	4.087692 ★★	4.075373 ★★	4.185547 ★★	4.03613 ***	4.033172 *
0.047513	0.049267	0.052312	0.051797	0.052743	0.050181	0.050588	0.050425	0.0477
2.492067 *	2.659371 **	2.794258**	2.759635 **	2.897379 **	2.876201 **	2.895197 **	2.890991 **	2.777306 *
-0.072021 $-2.269722 *$	-0.076461 $-2.493578 *$	-0.078588 -2.563509*	-0.080414 -2.684075 **	-0.10691 -7.204269 * *	-0.107086 -7.229982 ★★	-0.105258 -7.189748 * *	-0.104104 -7.112615 * *	-0.1055 -7.246236 *
0.03672	0.032706	0.029775	0.026988	- 1.204209 AA	-1.229902	-1.109140	-7.112015 A	-7.2402304
1.089204	0.032706	0.029775	0.020988					
0.192543	0.188259	0.184657	0.181151	0.154767	0.154342	0.153097	0.1559	0.153
6.066325	6.100753**	6.022355 **	6.241026 **	9.627268 **	9.623484 **	9.502985	9.770221 **	9.721461 *
0.26496	0,260402	0.256741	0.254366	0.228045	0.227996	0.229371	0.229494	0.2292
8.156882 **	8.258175 **	8.179884 **	8.429955 **	13.6882 ***	13.70136 **	13.86474 ***	13.88479 **	13.91414 *
0.299768	0.296367	0.293164	0.292389	0.266383	0.266215	0.26812	0.269085	0.267
10.53373 **	10.80646 **	10.67905 **	10.67477 **	13.14958 ***	13.17104 **	13.1327 ***	13.32169 **	13.60778 *
0.075951	0.072147	0.06897	0.065513	0.039438	0.038903	0.039647	0.036045	0.0269
2.204645*	2.101625*	2.02986*	2.026396*	1.569709	1.554434	1.5853	1.436896	1.1654
0.108517	0.103929	0.10098	0.098419	0.072573	0.075574	0.077106	0.07548	0.0725
2.896734 ★★	2.827389 **	2.772308 **	2.754052 **	2.559177*	2.740196 **	2.849428 **	2.836044 **	2.744702 >
0.844368	0.844219	0.84398	0.84383	0.843802	0.843598	0.843036	0.842302	0.8416
0.836656	0.836867	0.836984	0.837192	0.837526	0.837676	0.837455	0.837057	0.8367
1.63979	1.640646	1.6439	1.645887	1.648737	1.646353	1.646285	1.643676	1.6480
-1.719076	-1.731279	-1.742909	-1.755108	-1.768091	-1.779946	-1.78952	-1.798019	-1.8069

八戸大学紀要 第32号

表 IV-1b 東京都区部南西部住宅地価関数の推計結果 (No. 2)

	両側対数線形	(被説明変数及び			変換。)	(110.2)
	eq001	eq002	eq003	eq004	eq005	eq006
С	12.41953	12.3638	12.22913	12.20117	12.21099	12.21416
	38.53121 **	42.04308 **	67.35812 **	68.78444 **	69.06547 **	68.50084 **
LOG (MOYORIEKI_DIST)	-0.094374	-0.094176	-0.093321	-0.093112	-0.093643	-0.093778
	-8.43176 **	-8.433847 * *	-8.412554 *	-8.408083 ★	-8.557911 *	-8.581865 * ≉
LOG(TERMINAL_JIKAN)	-0.173565	-0.173768	-0.171987	-0.171119	-0.170577	-0.167578
	-8.08368 *	-8.109552 * *	-8.319226 **	-8.321269 **	-8.280574 **	-8.299918 * *
LOG(POP_DENSITY)	-0.015081 -0.590309	$-0.017301 \\ -0.689747$				
LOG(WR_DENSITY)	-0.024534	-0.024578	-0.026245	-0.026097	-0.026767	-0.027019
	-2.619234 **	-2.626158 * *	-2.873733 **	-2.861075 **	-2.958995 **	-2.978202 ★★
LOG(MW_DENSITY)	0.027715	0.027471	0.026649	0.026478	0.02616	0.025735
	2.90751 **	2.890358 **	2.807607 **	2.797461 **	2.766722 ***	2.69873 **
BOUKATIIKI	-0.067495 -5.244033 **	-0.069021 -5.682801 * *	-0.070997 -6.11766**	-0.07091 -6.11338 **	-0.070744 $-6.119051 \implies$	-0.070323 -6.143466 **
KASAI_SAFETY	0.017999 1.029919	0.017906 1.02104	0.019649 1.125542	0.018403 1.053281	0.019496 1.121485	
HINAN_SAFETY	0.012623 0.713527	0.01259 0.711877	0.013795 0.784584	0.011875 0.710926		
TOUKAI_SAFETY	-0.035539 -0.835222	-0.03472 -0.81675	-0.029529 -0.703127			
LOG (DOUROFUKUIN)	0.156768	0.1566	0.157883	0.15763	0.157959	0.161785
	8.888451 ***	8.923808 **	8.99849 **	8.996228 ★ *	9.035035 ***	9.479652 **
LOG(TISEKI)	0.074375	0.074284	0.075257	0.075762	0.075817	0.076556
	6.062613 ***	6.052795 ***	5.981198 **	6.046032 ***	6.061758 ***	6.141233 **
LOG (KENPEI)	-0.03848 -0.459525					
LOG (YOUSEKI)	0.114039	0.100076	0.093368	0.092988	0.093458	0.09304
	2.97753 **	3.903338 ***	3.53483 **	3.525362 **	3.550182 ***	3.522665 **
TEISEN_DUM	0.084685	0.080306	0.076924	0.075068	0.074512	0.076176
	3.596377 **	3.533139 ***	3.326377 **	3.302143 **	3.294389 **	3.356037 **
CHYUSEN_DUM	0.038122	0.036652	0.035391	0.033467	0.031919	0.031695
IKEBUKURO_DUM	2.060997 *	1.96388	1.883962	1.831952	1.774528	1.761855
TAKADANOBABA_DUM	0.120084	0.120525	0.11866	0.118856	0.119532	0.11813
	7.617519 ***	7.603962 **	7.592319 **	7.618883 * *	7.695605 **	7.667947 **
SINJYUKU_DUM	0.278078	0.278972	0.276429	0.276188	0.275963	0.273176
	21.64202 ***	21.97585 ***	22.54141 **	22.58291 **	22.67547 ***	22.80158 **
SIBUYA_DUM	0.346917	0.347783	0.346786	0.34695	0.347524	0.347211
	25.42903 **	25.78777 ***	26.32995 ***	26.42104 **	26.51417 ***	26.45203 **
MEGURO_DUM	0.346524	0.347732	0.347827	0.347632	0.346592	0.344782
	15.34333 ***	15.58641 **	15.70786 **	15.77082 ***	16.26521 ***	15.79088 **
GOTANDA_DUM	0.127744	0.128154	0.124929	0.124875	0.120393	0.11836
	5.361298 **	5.392983 ***	5.257233 ***	5.266522 ***	5.405332 ***	5.42629 **
SINAGAWA_DUM	0.168037	0.168366	0.166742	0.16929	0.168232	0.16749
	6.378562 ***	6.417417 ***	6.336979 **	6.635314 **	6.639302 **	6.678094 **
R-squared	0.829513	0.82942	0.829127	0.828995	0.828795	0.828306
Adjusted R-squared	0.821089	0.821412	0.821524	0.821803	0.822011	0.821917
Durbin-Watson stat	1.630136	1.627683	1.629164	1.625773	1.626724	1.62524
Schwarz criterion	-1.65835	-1.67146	-1.683397	-1.696275	-1.708757	-1.719558

⁽注意 1) 表中,各説明変数に対応する上段の数字は標本回帰係数を,下段の数字は t 値を,それぞれ表す。

⁽注意 2) ** は 1% 有意水準で有意であること、* は 5% 有意水準で有意であることをそれぞれ示す。

⁽注意3) イタリック体(斜体)で表されている方程式の t 値は、White の不均一分散一致標準誤差によって修正されたものである。

⁽注意 4) 表中 R-squared、Adjusted R-squared はそれぞれ決定係数及び自由度修正済とです。 (注意 5) 表中 Durbin-Watson stat, Schwarz criterion はそれぞれダービン・ワトソン比及びシュワルツの情報量基準をさす。

奈良 卓:東京都区部の地価変動に関する実証分析

7.0	00	20	40	50	CO	70
q10	eq20	eq30	eq40	eq50	eq60	eq70
424134.9	405169.8	410440.1	417857.1	398022.2	413347.8	419852
2.431626 *	2.464716 *	2.5065 *	2.557688 *	2.557506 *	2.68733 ★★	2.778539
-36908.34	-36840.94	-36889.18	-37203.97	-37028.36	-36851.79	-36882
-6.676096 **	−6.699506 **	−6.737801 **	−6.90134 **	−6.913314 **	-6.905058 ₩	-6.916589
-87936.2	-88004.98	-87020.46	-86600.63	-86245.19	-87508.95	-87303
−7.134067 **	−7.159425 **	−7.16047 **	−7.138356 **	−7.163054 **	−7.364401 **	-7.405115
-26312.82 -1.817575	-27068.33 -1.892518	-27956.43 $-1.978834 *$	-28699.98 $-2.04441 *$	-27881.22 $-2.029211 *$	-27111.57 $-1.965087 *$	-30346 -2.316455
-6263.623	-6278.53	-6236.137	-6533.64	-6492.357	-7125.559	2.310430
-0203.023 -1.365236	-0278.55 -1.369586	-0230.137 -1.354509	-0555.04 -1.424596	-0492.357 -1.415351	-1.560896	
10724.24	10641.17	10538.06	10357.26	10274.64	10572.83	6267.
2.474185 *	2.448964 *	2.413927 *	2.37762 *	2.366365 *	2.446719 *	1.728
-30613.38	-31132.47	-30886.85	-30685.59	-30762.79	-30606.19	-31066
-4.376608 **	−4.672397 **	-4.711477 **	-4.733525 * *	-4.745666 **	-4.676172 **	-4.695975
6977.067	6945,429					
0.841296	0.835089					
6842.624	6831.408	7172.213				
0.845457	0.844255	0.887169				
-20164.43	-19886	-17752.8	-13658.79			
-1.067014	-1.051888	-0.965433	-0.733198			
77429.49	77372.55	78586.12	78756.61	78570.41	77627.96	7853
7.870074 **	7.887626 ★★	8.16157 **	8.210227 **	8.200985 ≯≉	8.100957 **	8.36566
32888.44	32857.3	33099.95	33177.39	33427.86	34005.22	34820
5.137 **	5.131517 **	5.216447 ★★	5.25618 **	5.287688 ≯★	5.362579 **	5.549785
-13096.18						
-0.318699						
44241.09 2.284692 *	39488.78 3.196 **	39636.61 3.199254 ***	40131.97 3.243985 ★★	39621.7 3.207255 * *	37516.78 3.045441 ***	37068 3.020989
32742.74	31252.76	31873.84	31459.29	30446.72	21814.56	23575
32742.74 2.781073**	2.766209 **	2.811517 **	2.800502 **	30446.72 2.736456 **	2.633577**	2.832874
12856.13	12356.02	12260.48	11137.42	10316.39	2.033377 4-1	2.032014
1.403176	1.332009	1.319595	1.236288	1.157181		
41090.39	41240.45	40838.06	41309.73	41304.14	41513.26	42137
6.501927 **	6.508887 **	6.479883 **	6.595504 **	6.609631 **	6.663221 **	6.727531
109565.2	109869.4	109032.6	108923.8	108788.9	108948.9	10960
19.07732 **	19.34875 ★★	19.40853 ★★	19.49006 ★★	19.56948 ★★	19.6104 **	19.95809
143674.3	143968.9	143898.7	144290.2	144287.2	143662.7	14441
22.27237 **	22.59196 **	22.54621 **	22.74607 **	22.80056 **	22.71653 **	23.23155
139854.8	140266	139671.8	139006	139045	137657.5	13797
12.50596 **	12.79285 ★★	12.52047 ★★	12.91134 **	12.92742 ★★	12.22893 **	12.51248
40463.93	40603.59	40276.74	37786.93	37975.61	36563.59	37917
3.61208 **	3.639596 ★★	3.636227 ★★	3.663855 ★★	3.691006 **	3.723738 **	3.793735
57701.96	57814.17	57899.37	57718.17	58892.72	54283.14	5449
4.591164 **	4.617262 ★★	4.675038 ★★	4.659374 ★★	4.888607 ≫	4.861199 **	4.88233
0.795373	0.795316	0.795	0.79463	0.794475	0.79383	0.792
0.785262	0.785707	0.785878	0.785993	0.786331	0.786158	0.785
1.568655	1.568393	1.567826	1.56629	1.563627	1.57242	1.574
24.49092	24.47754	24.46543	24.45358	24.44068	24.43017	24.42

表 IV-2a 東京都区部都心部商業地価関数の推計結果 (No.1)

	而個計数線形						中個計劃總形	上個計数線形 (執前 田宗教のA 対数変換	(計粉変換)		
	AND MAN ENDER PARTY	00-	00		70	00	1/2000 EVEN 1/	-0000	-0000	*000	1000
	edOI	eq02	eq03	eq04	eq05	ed06	eq00001	eq0002	eq0003	eq0004	eq0005
O	-11574170 $-2.98893**$	-11557397 -3.008301**	-11431597 -2.962657**	-11559588 -3.001402 **	-11746614 $-3.053831 **$	-11816338 -3.047462 **	11.64039	11.6506 12.14481 **	11.753	13.40042 37.52968 **	13.50706 37.60496 **
MOYORIEKI_DIST	-754071.3 -1.80812	-755148.3 -1.803944	-772182.7 -1.855714	-734826.7 -1.876959	-753928.2 -1.93857		-0.362734 -3.21998 **	-0.360675 -3.269591**	-0.368904 -3.36905**	-0.366557 -3.365318 **	-0.39653 -3.742232 **
TERMINAL_JIKAN	1663.92						0.017059 3.480861 **	0.017037	0.017909	0.018163 3.798542 **	0.01854 3.88768 **
POP_DENSITY	-51.86746 -3.309988 **	-51.45194 -3.698622**	-52.21112 -3.794371**	-49.93101 -4.016485**	-47.07652 -4.137479 **	- 49.88103 -4.247615 **	-0.0000289 -5.579795 ***	-0.0000291 -5.820909**	-0.0000302 -6.347337**	-0.0000298 -6.321254 **	-0.0000317 -7.109696 **
OFFICE_DENSITY	88.93845	88.18546 1.877532	87.6006 1.867291	90.51814	90.17785	97.18184 2.12976*	0.0000486	0.0000486	0.0000487	0.0000485	0.0000462 4.995815 **
BOUKATIIKI	-1179019 -5.20664 **	-1183354 -5.799957**	-1173488 -5.822784**	-1191690 -6.053314**	-1191181 -6.084739 ***	-1231888 -5.841551 **	-0.379645 -3.592277 **	-0.380091 -3.599677**	-0.371239 -3.544008**	-0.359808 -3.382467**	-0.344001 -3.094444 **
KASAI_SAFETY	$\begin{array}{c} -200517.2 \\ -1.03509 \end{array}$	-201494.9 -1.044105	-167138.9 -0.93293	-169289.1 -0.952325			0.014179				
HINAN_SAFETY	-156628.5 -0.557718	-156212.9 -0.560155	-144250.3 -0.519275				0.110484	0.110192	0.118267	0.118435	
TOUKAL_SAFETY	153653.9	162413.4 0.54314					0.108851	0.114486			
DOUROFUKUIN	30114.07 2.699093 **	30112.81 2.703421**	30336.14 2.74467**	29910.85 2.706552**	30072.13 2.726869 **	31344.84 2.797136 **	0.020976 7.759488 **	0.020955	0.021084 7.832982**	0.021205	0.02155 7.972752 **
TISEKI	1080.233 2.785609 **	1079.19	1078.283	1079.098	1080.169 2.812675 **	1078.677	0.000185	0.000185	0.000185	0.000175	0.000175
KENPEI	161097.5 3.300428 **	161415.1 3.303257 **	161136.5 3.295352**	160965.6 3.302982**	161133.2 3.307878 **	159534.7 3.258393 **	0.021908	0.021908	0.02153		
YOUSEKI	9077.699	9073.18 5.722916 **	9050.57 5.736504**	9090.812	9092.039 5.775652 **	9181.492	0.002243 7.579257 **	0.002244 7.598526**	0.002231 7.553607**	0.002266 8.056842**	0.002234 7.94623 **
SYOUGYOU_DUM	-1775124 -6.373995 **	-1777678 -6.580208 **	-1770105 -6.618108**	-1753988 -6.6385**	-1761637 -6.643781 **	-1733091 -6.571745 **	-0.319612 -4.56911 **	-0.319304 -4.566494 **	-0.311746 -4.453918**	-0.299869 -4.137813**	-0.312481 -4.342703 **
R-squared	0.578642	0.578634	0.57852	0.578201	0.577953	0.575304	0.733539	0.733521	0.732832	0.731745	0.729241
Adjusted R-squared	0.563917	0.565078	0.566124	0.566953	0.567851	0.566291	0.724228	0.724948	0.724975	0.724591	0.72276
Durbin-Watson stat	1.779392	1.777959	1.775458	1.780035	1.782489	1.784946	1.454076	1.453883	1.452132	1.446223	1.415229
Schwarz criterion	32.01757	32.00216	31.987	31.97232	31.95748	31.94831	1.473564	1.458204	1.445355	1.433988	1.427849

奈良 卓: 東京都区部の地価変動に関する実証分析

表 IV-2a 東京都区部都心部商業地価関数の推計結果 (No. 2)

	両側対数線形		比側計数線形	(ダミー変数を)	全く戦田変数の	4. 计粉变换 \	
	eq001	ea002	ea10	ea20	ea30	ea40	eq50
С	-1.908203 -1.07703	-1.868429 -1.056543	-55557069 -6.006424**	-55589884 -5.998015**	-55909174 -5.98799**	-56247803 -6.159105 **	-70485753 -6.506552 **
LOG(MOYORIEKI_DIST)	-0.103757 -2.822739**	-0.099833 -2.771675**	-188919.1 -1.670476	-192157 -1.72694	-190178.6 -1.709476	-168016.8 -1.601593	
LOG(TERMINAL_JIKAN)	0.294457 4.188803 **	0.290852 4.146745 **	511085.2 1.950693	514059.1 1.976311*	498511.2 1.938932	491221.9 1.914663	611164.6 2.186281*
LOG(POP_DENSITY)	-0.276493 -7.876496**	-0.279518 -7.957253 **	-823163.7 -5.761023**	-820668.6 $-5.832461**$	-812739.2 -5.934556**	-796229.4 -5.923169**	-1060986 -7.194586**
LOG(OFFICE_DENSITY)	0.270796 6.723242 **	0.273604 6.800095 **	499583.4 3.251506 **	497266.7 3.246844 **	494088.7 3.241414**	501270.8 3.318597 **	573502.5 2.951092**
BOUKATIIKI	-0.440923 -4.03299**	-0.440001 -3.991572**	-805576.1 -3.675685**	-806336.1 -3.680477**	-825301.8 -3.843984**	-847814.3 $-3.933928**$	-974982.9 -3.529421**
KASAI_SAFETY	0.070089 1.107386		-57825.48 -0.392945				
HINAN_SAFETY	0.108825 1.960046	0.110128 1.991002*	-198996.9 -1.242882	-200072 -1.252602	-217395.4 -1.379316		
TOUKAI_SAFETY	0.135003 1.85682	0.166743 2.403647*	-135756.5 -0.875897	-161942.7 -1.106671			
LOG (DOUROFUKUIN)	0.414616 9.143753**	0.410225 9.164096**	723654.6 5.085732**	727276.9 5.165127 **	724302.8 5.171561**	710310.6 5.039562**	813250.3 4.502289**
LOG (TISEKI)	0.154452 4.252387 **	0.155268 4.276836 **	621767.1 4.185819**	621094 4.187129 **	619921.8 4.194287**	614160.5 4.199096**	754038.1 4.74463**
LOG (KENPEI)	2.369406 5.752038 **	2.360893 5.767138 **	10944945 4.987609**	10951968 4.977876 **	10987030 4.975665**	10950761 5.073054**	14108748 5.876054**
LOG (YOUSEKI)	0.650074 3.800428**	0.658376 3.889408**	1443368 2.708295**	1436518 2.707184 **	1454607 2.772402**	1500652 2.84957 **	1778983 2.292896 *
SYOUGYOU_DUM	-0.243696 -3.419611**	-0.243705 -3.396696**	-892537.1 -4.474007**	-892529.3 -4.490725**	-908275 -4.623473**	-895680.1 $-4.557926**$	-1190311 -4.458317**
R-squared	0.740398	0.739743	0.601438	0.601376	0.601089	0.599527	0.604618
Adjusted R-squared	0.730046	0.730192	0.585544	0.586748	0.58771	0.587354	0.595026
Durbin-Watson stat	1.398644	1.390893	1.841156	1.843954	1.846627	1.851634	1.847044
Schwarz criterion	1.232927	1.218306	31.27228	31.25529	31.23887	31.22563	31.72188

⁽注意 1) 表中,各説明変数に対応する上段の数字は標本回帰係数を,下段の数字は t 値を,それぞれ表す。

⁽注意 2) **は 1% 有意水準で有意であること, *は 5% 有意水準で有意であることをそれぞれ示す。 (注意 3) イタリック体 (斜体) で表されている方程式の t 値は, White の不均一分散一致標準誤差によって修正されたものである。

⁽注意 4) 表中 R-squared, Adjusted R-squared はそれぞれ決定係数及び自由度修正済み決定係数をさす。

⁽注意 5) 奏中 Durbin-Watson stat, Schwarz criterion はそれぞれダービン・ワトソン比及びシュワルツの情報量基準をさす。

表 IV-2b 東京都区部南西部商業地価関数の推計結果 (No. 1)

	両側線形(被說明変数,		説明変数とも対数変換せず。)	換せず。)			1	宁側対数線形 (片側対数線形(被説明変数のみ対数変換。)	讨数変換。)		
	eq01	eq02	eq03	eq04	eq05	90bə	eq07	eq0001	eq0002	eq0003	eq0004	eq0005
C	812875.3	824711.2	798316.7	583429.8	620279.6	564607.3	585964.4	13.23177	13.22634	13.23211	13.24499	13.15995
	9.794400 ��	9.05/20/ 44	3.010334 **	9.31121344	4.300007	4.31,9009 44	4.000/40 44	40.00040 44	11.30131 44	00.33264 0.0	00.00000 **	00.04039 00
MOYORIEKI_DIST	-268673.9 -3.955128 **	-268318.6 -3.962355 **	-269470.6 -4.005762**	-266990.3 -4.009145**	-267997.4 -4.075792**	-261781.5 -4.075988 **	-266775.3 -4.186995 **	-0.276676 -4.213453 **	-0.276621 -4.241961 **	-0.27641 -4.269218**	-0.280394 -4.395985**	-0.271728 -4.430992 **
TERMINAL_JIKAN	-9862.876 -3.060829 **	- 9856.249 -3.061064 **	-9780.801 -3.01709 **	-9714.919 -3.00173**	-9795.024 -3.039959**	-9994.457 -3.114806 **	-9460.901 -2.930047 **	-0.01249 -4.430392 **	-0.012489 -4.453998 **	-0.012509 -4.481628**	-0.012088 -4.346144**	-0.012473 -4.509408 **
POP_DENSITY	-10.19943 -2.405769*	-10.17546 -2.424003 *	-9.735767 -2.51977 *	-9.715874 -2.511029 *	-10.10471 -2.667565**	-9.009789 -2.630899**	-11.20878 -2.959054 **	-0.0000064 -1.566573	$-0.0000064\\-1.57114$	$\begin{array}{c} -0.00000651 \\ -1.732523 \end{array}$	-0.00000831 -2.123055 *	-0.00000675 -1.845634
OFFICE_DENSITY	50.78544	50.86846	53.70508 2.063487 **	54.25963 2.086027 *	53.40826 2.070598 *	53.7123 2.072881 *	53.27016	0.0000478 2.318003 **	0.0000478	0.0000471	0.0000466	0.0000466
BOUKATIIKI	-169305.1 -3.595758 ***	-170912 -3.253177 **	-168953.2 -3.17287 **	-161337.7 -3.194341**	-153123.3 -3.110465**	-152091.2 -3.100723**	-128535.9 -2.636148 **	-0.132395 -2.963321 **	-0.132183	-0.132444 -3.084804**	-0.110999 -2.582162 *	-0.102488 -2.34479 *
KASALSAFETY	-1.479325	-56500.57 -1.477734	-57424.12 -1.435928	-56532.14 -1.35153	-51284.31 -1.131316	-41872.77		-1.92622	-0.078653 -1.955479	-0.078509 -1.963219	-0.078606 -1.86433	-0.073697
HINAN_SAFETY	-26887.07 -0.43477	-26280.54 -0.425945						0.006605	0.006589			
TOUKAL_SAFETY	73322.59	73285.78	62073.98 1.118198	56933.52 1.032976				0.129179	0.129057	0.13186 2.158496 *	0.126151 2.077593 *	0.095267
DOUROFUKUIN	7643.568 2.344495 *	7668.179 2.357699 *	7742.213 2.444501 *	8030.563 2.591935 *	7798.181	7771.853 2.553862 *	8485.765 2.791288 **	0.005339	0.005346	0.005322	0.005882	0.005646 2.373914 *
TISEKI	357.7222 1.570953	357.9435 1.576104	354.8405 1.573882	354.5622 1.567051	352.2594 1.561343	349.3002		0.000293	0.000293	0.000294		
KENPEI	-2514.082 -1.028206	-2568.26 -0.974965	-2591.052 -0.994657					-0.0000641 -0.022682				
YOUSEKI	1814.417 4.437045 **	1797.32 6.241363 ***	1793.23 6.245015 **	1750.837 6.575721 **	1754.404 6.631963**	1752.891	1772.471 6.419778 **	0.001489	0.001489	0.001493	0.001518	0.001552 4.543888**
SYOUGYOU_DUM	-6547.726 -0.093981							0.123676	0.123564	0.122481	0.119214	0.106616
R-squared	0.683855	0.683837	0.683329	0.682754	0.682043	0.680977	0.668252	0.739231	0.739231	0.7392	0.730208	0.727205
Adjusted R-squared	0.658946	0.660982	0.662471	0.66387	0.665111	0.665964	0.654672	0.718686	0.72038	0.722021	0.714149	0.712678
Durbin-Watson stat	1.309068	1.31063	1.310668	1.318892	1.314968	1.326057	1.369194	1.228275	1.228308	1.226401	1.253653	1.267882
Schwarz criterion	27.97776	27.94884	27.92146	27.8943	27.86756	27.84192	27.85206	0.155806	0.126827	0.097968	0.102884	0.084972

表 IV-2b 東京都区部南西部商業地価関数の推計結果 (No. 2)

	両側対数線形					片側対数線形		(グミー変数を除く説明変数のみ対数変換。)	み対数変換。)			
	eq001	eq002	e4003	eq004	eq005	eq10	eq20	eq30	eq40	eq50	09ba	eq70
C	12.05402 10.31556**	12.22604 10.49263**	11.68454	11.85258	12.23593 13.1994 **	229112 0.242921	308743.8	559596.4 0.595714	459538.4 0.471825	45418.5	-598366.7 -0.994016	-840144.3 -1.532822
LOG (MOYORIEKI_DIST)	-0.068851 -2.980744**	-0.06968 -3.075565**	-0.068669 -3.079991**	-0.069706 -3.094389 ***	-0.067148 -2.904872 ***	-51692.26 -2.907949 **	-52266.93 -2.902697**	-53478.31 -3.052548**	-50725.43	-50221.38 -2.854128 **	-52638.94 -2.833991 **	-46279.24
LOG (TERMINAL_JIKAN)	-0.16566 -3.355657**	-0.166491 -3.393249**	-0.165109 -3.396074**	-0.170139 -3.427976 ***	-0.173393 -3.424803 ***	99171.62 2.553806*	-102107.5 -2.548465 *	-103339.6 -2.592557 *	-104823.2 -2.587534 *	-103536.3 -2.561073*	99726.44 2.465545*	-101638.5 -2.549021*
LOG (POP_DENSITY)	-0.097234 -1.338512	-0.10433 -1.38324	-0.102694 -1.35369	-0.112032 -1.528447	-0.126123 -1.75825	-97583.64 -1.555054	-103025.9 -1.702184	-113390.8 -1.771253	-123125.5 -1.96035	-120714.1 -1.940851	-135525 -2.165552*	-118893.7 -2.061938*
LOG (OFFICE_DENSITY)	0.132188 3.891365**	0.133777 3.87081**	0.133752 3.885012**	0.126415 3.494587 **	0.130484	96029.1 3.226392 **	91655.02	93931.9 2.852967**	97159.58	96861.45 3.050699 **	99681.8 3.090509 **	99509.55 3.068854 **
ВОИКАТШКІ	-0.083512 -1.447568	-0.080707 -1.378146	-0.071797 -1.331745	-0.07478 -1.375479		-67648.39 -1.429979	-69129.15 -1.449681	-65060.56 -1.328745				
KASALSAFETY	-0.092791 -2.000775*	-0.092084 -2.000633*	-0.087187 -1.927733	-0.08974 -2.007245*	-0.081606 -1.848733	-77830.56 -1.893666	-79181.71 -1.929021	-78165.09 -1.927898	-68178.36 -1.705915	-65399.11 -1.656194	-53692.83 -1.430583	
HINAN_SAFETY	0.04922	0.049376	0.048797			29030.93						
TOUKAI_SAFETY	0.153908	0.1552 2.802783**	0.15098 2.715489**	0.173446 3.417344 **	0.150231 3.280516 **	92417.26 2.346824 *	105615.4 2.805267**	107597.8 2.932703**	86142.43 2.656086**	84941.14 2.598064 *	84507.65 2.552118*	61419.41 2.584796*
LOG (DOUROFUKUIN)	0.066665	0.072846 2.170131 *	0.075006	0.07455 2.173967*	0.054634	43033.23 1.329048	42792.91 1.321818	51783.59	37801.6	40997.25	40246.98	37785.57 1.753174
LOG (TISEKI)	0.02005					29019.37	29165.34 0.768624					
LOG (KENPEI)	-0.132823 -0.74203	-0.137247 -0.773563				-195866.7 -1.554349	$\begin{array}{c} -191015 \\ -1.519915 \end{array}$	-197411.6 -1.581882	-96439.2 -0.875088			
LOG (YOUSEKI)	0.337928	0.335137	0.317507 2.098403 *	0.320397 2.149736*	0.254108	266564.4 1.849824	267684	263633.6	198797.8	191956.9	323978.4 4.983951 **	337129.7 5.262508**
SYOUGYOU_DUM	0.142579 2.296718*	0.142426 2.304468*	0.142004 2.296897 *	0.136637 2.202587*	0.126271	98697.41 1.885947	95493.3 1.814569	95245.51 1.805959	86875.42	87495.35 1.562747		
R-squared	0.667016	0.666033	0.665274	0.661493	0.655516	0.598049	0.595687	0.592012	0.584828	0.584091	0.574575	0.568172
Adjusted R-squared	0.632386	0.634227	0.636281	0.635047	0.631482	0.556246	0.557181	0.556675	0.552393	0.555074	0.548395	0.545097
Durbin-Watson stat	1.421027	1.451082	1.446419	1.414741	1.411421	1.650847	1.645925	1.706322	1.680895	1.674542	1.661878	1.621889
Schwarz criterion	-0.16948	-0.202032	-0.23526	-0.259528	-0.277525	27.08075	27.05111	27.02466	27.00661	26.97289	26.96001	26.93945

⁽注意1) 表中, 各説明変数に対応する上段の数字は標本回帰係数を, 下段の数字はも値を, それぞれ表す。

⁽注意2) ** は1% 有意水準で有意であること, * は5% 有意水準で有意であることをそれぞれ示す。 (注意 2) メカリック体(蛇体)を書きカテンス片田声の上部ト Wikiteの不均一な斯一海神楽問業にトックを正させたさの

⁽注意3)イタリック体(斜体)で表されている方程式のも値は、White の不均一分散一致標準誤差によって修正されたものである。 (注意4)表中 R-squared, Adjusted R-squared はそれぞれ決定係数及び自由度修正済み決定係数をさす。 (注意5)表中 Durbin-Watson stat, Schwarz criterion はそれぞれゲービン・ワトソン比及びシュワルツの情報量基準をさす。